Teen Brain Development

Together We Can Conference Baton Rouge, La October 2011

Stephen W. Phillippi, PhD, LCSW
LSU School of Public Health
Institute for Public Health and Justice

(Slides/materials adapted from the MacArthur Foundation's Nat'l MH/J] Action Network and the Nat'l Center for Mental Health and Juvenile Justice MH Training Curriculum-JJ)

ModelsforChange

Overview

At the conclusion of this session, participants will be able to:

- Describe basic brain development in adolescents
- Describe basic adolescent development across physical, emotional and cognitive tasks
- Discuss normal adolescent risk taking and impulsive behavior

ModelsforChange

Brain Basics - Development

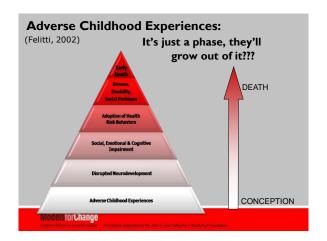
A message comes into a brain cell, the cell does its work and sends the message on to other brain cells.

ModelsforChange

Brain Basics - Development

- The brain is an amazing organ that controls most of the things we do. As the brain develops it focuses on different areas of functioning:
 - First Physical life functions (breathing, heart rate, blood pressure)
 - Next Emotional (happiness, anger, attachment)
 - Last Thinking (planning, impulse control)

ModelsforChange


Brain Basics - Plasticity

- Critical Periods for some aspects of brain development, timing is critical. Important abilities will be lost or diminished if they don't develop at the right time.
- Childhood experiences impact how the brain develops.
- Negative early childhood experiences can result in developmental delays.
 - Don't confuse a youth's age with his or her developmental level.

ModelsforChange

Brain Basics - Plasticity

- Activity-dependent changes:
- Experiences cause changes in the brain, for better or worse
 - This is why we practice behaviors the more we repeat things the stronger the brain connections.
 - A single, powerful experience can affect our brain for life.
 - Repeated smaller experiences can also change our brain.
- This is why there is always hope that youth can get better with new, positive experiences.

Teenage Brain Development

- Adolescence changes begin around ages 10-13.
 - Physical Appearance (puberty)
 - Emotions (feelings and identity)
 - Thinking (planning and impulse control)
- We usually identify adolescence as starting when we see physical changes. Though less obvious, these physical changes will be followed by changes in emotional expression and thinking.
- But the changes in thinking aren't in place until the early 20's.

Models for Change

What Science Tells Us About the Brain

 Functioning of the frontal lobes is not at adult levels.

Why is that important?

ModelsforChange

Teenage Brain Development

- Adolescence is like giving a teenager a car with:
 - A new body with a lot of horsepower (physical);
 - A sensitive gas pedal that can go from 0-60 mph in a few seconds (emotional); and
 - A brake system that won't work completely for several years (thinking).

Models for Change

Cognitive Development

- Science has taught us that the part of the brain that develops most during adolescence is the prefrontal lobe, which controls:
 - Complicated decision-making
 - Thinking ahead
 - Planning
 - Comparing risks and rewards

ModelsforChange

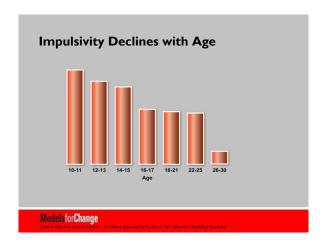
Cognitive Development

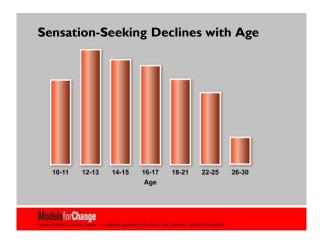
- This new science has also taught us that the prefrontal lobe is still developing and maturing through adolescence and into the early 20's.
- What does this suggest?

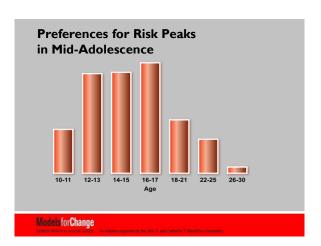
Cognitive Development

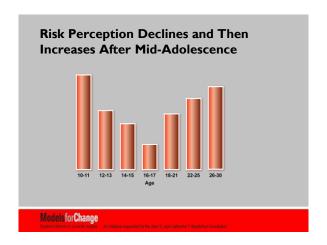
- It suggests that
 - Because the brains of teenagers are not yet fully developed, some of their behaviors may result from immaturity.
 - Recall your teenage behavior: did you do anything that could have gotten you stopped by police?
 - Would you deal with that same situation differently now as an adult?

ModelsforChange

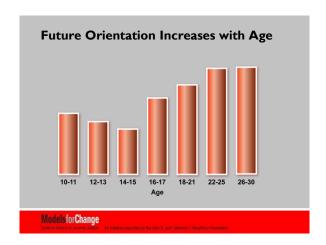

Cognitive Development

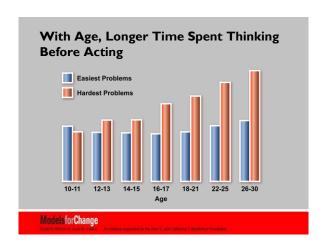

- If a four year old child doesn't follow signs posted on a bus do we hold them responsible?
 - No, because we realize they are not yet capable of reading.
- Even though teenagers start to look like adults, they are still limited by their cognitive development.
- Don't confuse physical development with emotional or cognitive development.

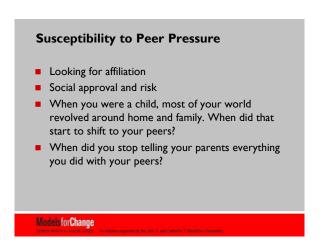

Models for Change

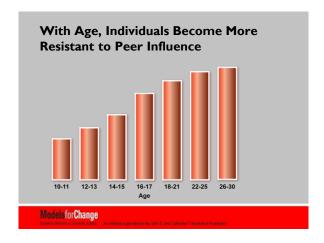

Cognitive Development

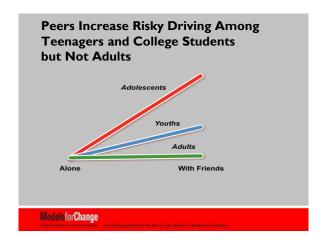
- So, what are some of the types of thinking that will change between adolescence and adulthood?
 - Self-control
 - Short-sightedness
 - Susceptibility to peer pressure

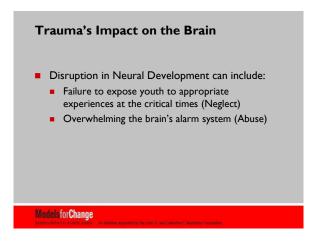


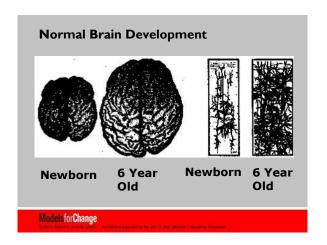


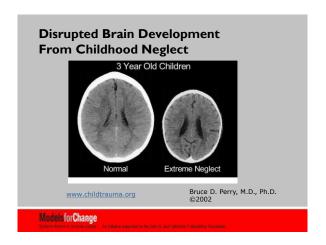




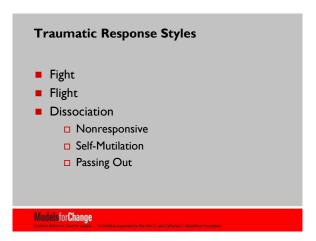








Adolescents are less able to control impulses and more driven by the thrill of rewards Adolescents are more short-sighted and oriented to immediate gratification Adolescents are less able to resist pressure from peers



So, What Can Adults Do to Help Adolescents? Brain Plasticity – Youth brains develop based on what they experience Adolescence can be a time of positive experiences Adults can help teenagers develop strengths Calming and self-regulation skills Assertiveness rather than aggression Problem-solving skills

System Reponses
Science doesn't tell us where to draw these age lines
 BUT the policies chosen should at least be compatible with the scientific evidence
 AND policies chosen should also reflect costs of erroneously severe reactions and punishments vs erroneously lenient ones
Models for Change Symmetric Department and Interference of the John Cambridge Machines Foundation