
PLAGUE

Epidemiology

Diagnosis

Yersinia pestis is a nonmotile, gram-negative bacillus that belongs to the Enterobacteriacea family.

Lab Diagnosis

- Culture- Culture of Y. pestis confirmed from blood, bubo aspirate (bubonic), sputum or tracheal wash (pneumonic), and CSF.
 - -Gram stain shows organism with bipolar (safety-pin) morphology.
 - -Direct fluorescent assay (FA) shows bacilli
- **Immunoflourescence** positive for *Y. pestis* F1 antigen.
- Serologic test- 4-fold difference in antibody titer between 2 serum specimens (4 wk apart)
- Polymerase chain reaction -for rapid diagnosis.
- Microbiology lab should be informed of suspected cases to minimize risks of transmission.

Suspect: Clinically compatible case

Probable: Clinically compatible -Elevated serum antibody titers to

Y. pestis F1 antigen,

-F1 antigen by fluorescent assay

Confirmed:

- -Isolation of *Y. pestis*
- -Detection by PCR,
- -Fourfold change in serum antibody titer to *Y. pestis* F1 antigen

Control

EPIDEMICS

- ☐ Human infection most frequently occurs when an epizootic develops among synanthropic rats in centers of human population, following contact with infected wild rodents.
- ☐ Commensal rat fleas, including plague—infected fleas, leave the bodies of rats killed by plague seeking a blood meal
- ☐ Following the death of rodents during an epizootic in a natural focus. The fleas can accumulate at the entrance to and the ground surface around burrows. The fleas are not strictly species—specific.
- Exposure to droplets from a pneumonic plague
- Bioterrorism possible

PLAGUE LANDSCAPE

- ☐ Climatic conditions are favorable for a high and stable number of rodent reservoirs and flea vectors of *Y. pestis*.
- Most natural foci = mountains, low annual precipitation, dry seasons inhibiting growth of thick woody vegetation → formation of deserts, semi-deserts and steppes (savannas, prairies, pampas and so on).

RODENT SPECIES

Many species of rodents / other small mammals are susceptible to infection but only occasionally infected and not necessarily important reservoirs of infection.

- □ **Enzootic** (maintenance) hosts: rodents from genera that are relatively resistant to plague, low mortality, positive antibody rate up to 100%. Die-offs rare.
- ☐ **Epizootic** (amplification) hosts. Introduction into a highly plague-susceptible species to plague, an epizootic may reach considerable magnitude with high mortality

FLEA SPECIES

To understand epidemiology and transmission it is essential to determine the flea species involved

Fleas specific to commensal rodents with wide distribution found in several endemic areas:

- ☐ Xenopsylla cheopis (Oriental rat flea) has a wide distribution,
- ☐ X. brasiliensis and Nosopsylla fasciatus is more limited
- ☐ Restricted distribution, *X. astia*.
- ☐ Flea species common in the environment of commensal rodents, not specific for them. *Echidnophaga gallinacean, Pulex irritans*, and the cat flea, *Ctenocephalides feli.*

EPIDEMIOLOGIC INVESTIGATION

An epidemiological investigation should be performed for each human case to determine **source of infection and risk of additional human cases**. Reports of these investigations should include:

Complete history of the patients' activities and travel during the incubation period of the infection;

Results of field studies to determine which animal and flea species are likely sources of infection or pose a continuing threat to humans; Proximity of infected rodents and fleas to human dwellings or workplaces;

Estimated number of people involved in activities that place them at high risk of plague infection;

Information on possible exposure to Y. pestis infection of patient contacts (especially important for pneumonic plague cases).

Treatment, Prophylaxis

TREATMENT

- Streptomycine: 30mg/kg Max 2g/day, IM, div in 2 doses/day, 10 days
- Tetracycline: Oral loading dose 15mg/kg, max 1g, then 25-50mg/kg (max 2g), PO
- · Doxycycline: 200mg/day, 1 or 2 doses, PO
- · Sulfamide: Higher mortality
- Gentamycin: 3mg/kg/day, 3 divided doses, IM or IV
- **Children**: **streptomycin** (30 mg/kg per day in 2 or 3 divided doses given intramuscularly) or **gentamicin** (6-7.5 mg/day), IM
- Pneumonic plague = Streptomycin
- Alternative drugs: Tetracycline, doxycycline, chloramphenicol, trimethoprimsulfamethoxazole, ciprofloxacin Alternative drugs.
- Duration 7-10 days or until several days after lysis of fever.
- Drainage of abscessed buboes may be necessary.

PROPHYLAXIS

- Indicated for people with close exposure (<2m) to a patient with pneumonic plague
- Anyone exposed to pneumonic plague with a >38.5°C fever or any other symptoms
- Children: trimethoprim-sulfamethoxazole, 40mg/kg, 2 doses/day, PO
- Adults: doxycycline, ciprofloxacin, trimethoprim-sulfa Adult 1-6g/day,2 doses/day, PO
- Given for 7 days in usual therapeutic doses

Standard & Droplet Precautions (until 24 hrs after treatment)

Household contacts or anyone with face-toface exposure to a plague patient should report fever >38.5°C or other signs of illness to their physician.

VACCINATION

- Worldwide, live attenuated and formalin-killed Y. pestis vaccines are variously available for human use.
- Variably immunogenic and moderately to highly reactogenic.
- No protection against primary pneumonic plague
- In general, vaccinating communities against epizootic and enzootic exposures rarely feasible; little use during human plague outbreaks, since a month or more is required to develop a protective immune response.
- Indicated for persons whose work routinely brings them into close contact with Y. pestis, such as laboratory technicians in plague reference and research laboratories and persons studying infected rodent colonies.