Compare SUDAAN & SAS for BRFSS Modeling Analyses

Instructor: Donna Brogan, Ph.D.
March 23, 2013 Saturday PM
2013 BRFSS Annual Conference
dbrogan@emory.edu
WORKSHOP OBJECTIVES
COMPARE SURVEY PROCS

• SUDAAN
 • LOGISTIC (RLOGIST in SAS Callable)
 • REGRESS

• SAS
 • SURVEYLOGISTIC
 • SURVEYREG

• Interaction terms
• Predicted marginals & risk ratios
ASSUMED PREREQUISITES

• BRFSS survey data analysis
 • SUDAAN and/or SAS survey procs
• BRFSS survey design & sampling plan
• Concepts/basics of probability sampling
• Statistical methods, using SAS STAT for SRS
• Epidemiological methods
• Linear regression & logistic regression
Describe BRFSS RDD Sampling Plan to SUDAAN and SAS
BRFSS Survey Design Variables Through 2010

- **__FinalWt**
 - Sampling weight variable to estimate all population parameters for adults

- **__Ststr**
 - 1st stage stratification variable for landline sampling frame (state, density, geographic)

- **__Psu** (in later years = *Seqno*)
 - Earlier years: cluster of phone numbers
 - Later years: phone number selected (marker)
More BRFSS Survey Design Variables Thru 2010

- Module for Sample Child
 - _ChildWt, _Ststr, _Psu
 - Target Popn: children reside in state in HU
 - Unit of analysis = child

- Interview items about housing unit
 - _HouseWt, _Ststr, _Psu
 - Target Popn: HUs in state (occupied?)
 - Unit of analysis = HU
BRFSS Sampling Weight Variables through 2010

- **Sum of** `_FinalWt` **over r responding adults**

 = # **adults** (noninst, HH) in state popn

- **Sum of** `_HouseWt` **over r responding adults**

 = # HUs in state (occupied??)

- **Sum of** `_ChildWt` **over responding adults with child data**

 = # children (noninst, HH) in state popn
SAS SURVEY PROCS
Describe BRFSS RDD—1 Year

• BRFSS thru 2010, one or more states
• Any one year (NOT multiple years)

• STRATA _STSTR ;
• CLUSTER _PSU ;
• WEIGHT _FINALWT ;
 • Or _ChildWt or _HouseWt
Describe BRFSS RDD—1 Year

- BRFSS thru 2010, one or more states
- Any one year (NOT multiple years)

- PROC DESIGN = WR ... ;
- NEST _STSTR _PSU ;
- WEIGHT _FINALWT ;
 - Or _ChildWt or _HouseWt
Survey Design Variables: BRFSS Dual Frame 2011 +

• **_LLCPWT** adult final weight
 • Sampling weight variable to estimate all population parameters for adults

• **_Ststr**
 • 1st stage stratification variable for dual frame (state, density, geographic, landline/cell)

• **_Psu** (= **Seqno**)
 • Marker for phone number selected
More Survey Design Vars: BRFSS Dual Frame 2011 +

- `_CLLCPWT` child final weight
 - Sampling weight variable to estimate all population parameters for children
- Use above with `_Ststr` and `_Psu`

- Did not find HU sampling weight variable in 2011 dual frame BRFSS dataset
 - Problematic to calculate with cell phones added to 1st stage sampling frame
BRFSS Sampling Weight Variables: 2011 onward

- **Sum of** \(_{LLCPWT}\) over \(r\) responding adults
 \[= \# \text{ adults} \text{ (noninst, HH) in state popn}\]

- **Sum of** \(_{CLLCPWT}\) over respondents with child data
 \[= \# \text{ children} \text{ (noninst, HH) in state popn}\]
SAS SURVEY PROCS
Describe BRFSS RDD—1 Year

- BRFSS 2011 +, one or more states
- Any one year (NOT multiple years)

- STRATA _STSTR ;
- CLUSTER _PSU ;
- WEIGHT _LLCPWT ;
 - Or _CLLCPWT
SUDAAN SURVEY PROCS
Describe BRFSS RDD—1 Year

• BRFSS 0211 +, one or more states
• Any one year (NOT multiple years)

• PROC DESIGN = WR ... ;
• NEST _STSTR _PSU ;
• WEIGHT _LLCPWT ;
• Or _CLLCPWT
BRFSS Dataset for Workshop

LA 2004
BRFSS SAS Dataset
LA 2004

- n=9064 obsns (Rs)
- Geographic stratification: 9 regions (HDs?)
- Phone density stratification: listed, unlisted
- Thus, 18 strata

- Read in dataset. Go to folder BRFSSData and run procformat2013.sas
LecEx01
_RFBING2 and _BMIR

• **_RFBING2** binge drinking
 • 7920 no, 965 yes
 • 179 missing (coded . [dot] by DB)

• **_BMIR** body mass index
 • 497 missing (coded . [dot] by DB)
 • Minimum = 6.68, 8.80, 11.90
 • Maximum = 99.98 (4 values), 88.38
 • Nonmissing values assumed real by DB for purpose of this workshop
Item Nonresponse in SAS Survey Procs: How Handled

- **SAS default:** MCAR
 - MCAR = missing completely at random
 - Assume item nonrespondents like respondents
 - SAS deletes obsns with missing data from input dataset

- **SAS option:** NOMCAR on Proc statement
 - Analyzes those who respond as subpopulation
 - Those not respond used in variance estimation
Compare Two SAS Options
MCAR and NOMCAR

- Identical point estimates of popn parameter
- Estimated variance (s.e.) may differ slightly
 - NOMCAR generally slightly higher
- Survey ddf may differ slightly
- Inference populations differ
 - MCAR: target popn, e.g. all adults
 - NOMCAR: subpopulation of elements who would respond to item, if asked
How SUDAAN Handles Item Nonresponse in Analysis

- **SUDAAN default**: subpopulation analysis
 - Like SAS option NOMCAR
 - SUDAAN defines subpopn as those who would respond to item, if asked
 - SUDAAN does subpopulation analysis, uses all obsns in dataset to estimate variances
- SAS survey procs initially had default MCAR only, then added NOMCAR option after complaints
DB Approach to Item Nonresponse

- Only analyze variables with low item nonresponse rate, e.g. less than 10%
- Analyze subpopn who respond to item
 - Default in SUDAAN
 - NOMCAR option on SAS PROC statement
- After I get s.e., CI, p-values, etc. I might make MCAR assumption & infer to popn
- This approach is conservative
Other Aspects of Survey Analysis: Assume Familiar

- BRFSS variance estimation: TSL
 - Taylor Series Linearization
 - Default in both SUDAAN & SAS survey PROCS

- Survey DDF (denominator degrees of freedom): # first stage strata less # of PSU’s in the sample
 - In BRFSS, since early 1990’s, each obsn is PSU
Descriptive Analyses

Leading up to
Modeling Analyses
Descriptive Analyses of BRFSS Data

- Can do a lot with descriptive analyses
 - May be all you need to do
 - Simpler to analyze & explain vs. modeling

- Always begin with descriptive analyses, even if eventually plan modeling analyses
Beyond Descriptive Analyses of Survey Data

- Choose statistical model based on:
 - Characteristics of dependent variable
 - Effects of independent variables noted in literature or your own descriptive analyses

- Research question generally is this:
 - Is independent variable X related to dependent variable Y, after controlling on or adjusting for covariates A, B, C, D, and E?
Modeling Procedures

with Complex Sample Survey Data
Sample Survey Statisticians’ View on Survey Data Analysis

- **Descriptive analyses**
 - Always use design-based analysis
 - I.e., recognize sampling plan in analysis
 - Survey software needs survey design variables
 - Weight, stratification & PSU variables for TSL

- **Modeling analyses**
 - Difference of opinion on how to proceed
 - Debate is lively and in theoretical context
Philosophical Approaches to Modeling with Survey Data

• “Design-based” approach

• “Model-based” approach
 • Confusing name, unfortunately

• Modified design-based approach
 • Korn & Graubard, Binder & Roberts
Design-Based Approach: Use Survey Software

- When analyze, recognize sampling plan
 - Weighting, clustering (PSU), stratification
- **Goal:** develop model that describes finite target popn (usually large)
- Estimate regr coeffs whose true values come from fitting model to all N elements in popn
- Methods based on **large values for DDF**
- More robust to model misspecification
Model-Based Approach: Do Not Use Survey Software

- Consider finite popn a random sample from a theoretical “super population”
 - Have sample from the inference “super popn”
- Sampling plan **not** related to dependent variable value (noninformative or ignorable)
- Specify model for super popn
- Less robust to model misspecification
- May or may not use survey design variables
Problem: use sampling weight variable may make s.e.’s large for estimated regr coeffs

Solution: quantify variability of weight var

- If “small” do design-based analysis
- If “large”, do analysis unweighted but....
 - Use as ind vars factors that go into calculation of sampling weight variable, i.e. stratification, oversampling, nonresponse adjustment, poststratification
 - Take clustering into account in analysis (if present)
References: Design-Based vs. Model Based Analyses

What Method(s) Used by Most Survey Data Analysts?

- **Design-based** approach common. Why?
 - Recommended without debate for **descriptive** analyses of survey data
 - Software packages available to fit common statistical models to survey data
 - Model-based/other methods requires detailed knowledge of sampling & weighting plan, info often not available to data analysts
 - Many referees expect design-based analysis
Popn Parameters Estimated with Design-Based Approach

- Select a statistical model & dep/ind vars
 - Logistic regression, linear regression, etc.
- Popn parameters are values of regression coeffs that would be obtained if model was fit using all N elements in finite popn
- Use sample of n elements to estimate these popn regression coeffs & to test null hypotheses about them
MODELING PROCEDURES in SUDAAN

Overview
SUDAAN Modeling PROCs
LOGISTIC & REGRSS

- **LOGISTIC**--logistic regression
 - Dependent variable **dichotomous**
 - **Must** be coded 1 or 0 (reference group)
 - Independent Vars—continuous/categorical
 - RLOGIST if using SAS-Callable SUDAAN

- **REGRESS**--linear regression
 - Dependent variable **continuous**
 - Independent Vars—continuous/categorical
Additional SUDAAN Modeling PROCS

• MULTILOG-polytomous logistic regr.
 • Categorical dependent variable: >= 3 levels
 • Nominal (generalized logit) or ordinal (cumulative logit)

• SURVIVAL—survival analysis
• KAPMEIER—survival curves
• LOGLINK—log-linear regression
SUDAAN Modeling PROCS
Common Features

- Specify only one model per PROC
- No stepwise procedures available
- A few goodness of fit tests
- Capability to test own hypotheses (like GLM)
- Can test reduced vs. full model
SUDAAN Modeling PROCS
Common Keyword: MODEL

- \textbf{MODEL} \ Y = \ X_1 \ X_2 \ X_3 \ X_1 \times X_2 \ ;

- Specify \textit{categorical} independent variables
 - On \texttt{CLASS} statement
 - Or on \texttt{SUBGROUP/LEVELS} statements

- Remaining independent vars continuous
- \(X_1 \times X_2 \) not work for 2 continuous variables
- \(X_1 \times X_1 \) not work either
Parameterization of Categorical Independent Vars

- SUDAAN chooses how to parameterize:
 - One level chosen as “reference” level
 - All other levels compared to “reference”
 - Regression coefficient for reference level is in vector of regr coeffs & defined to be zero
 - You will see the value zero on output
- User or SUDAAN chooses reference level for each ind categorical variable
SUDAAN Modeling PROCS
Common Keyword: REFLEVEL

- **REFLEVEL** statement (optional)
 - Choose reference level for categorical ind vars

- **REFLEVEL**
 AGE3R = 1
 SEX = 2 ;
 - Reference levels are: youngest, female

- SUDAAN chooses reference level if you don’t
 - Highest coded value of categorical variable
SUDAAN Modeling PROCS
Common Keyword: CONTRAST

- CONTRAST statement (optional)
 - Linear contrast(s), a vector [1 df] or matrix [multiple df], which is then multiplied by the vector of popn regression coeffs
 - Tests null hypothesis(es) about popn regr coeffs
 - Many CONTRAST statements per PROC allowed
 - SUDAAN outputs many default contrasts
 - CONTRAST tedious to use! EFFECTS is easier!
SUDAAN Modeling PROCS
Common Features: EFFECTS

- **EFFECTS** statement (optional)
 - **Easier** way to write CONTRAST statement
 - Don’t use *all* components of vector of regr coeffs
 - **EFFECTS AGE3R SEX ;**
 - Tests null hypothesis that all regression coefficients for age (2) & all regression coefficients for sex (1) are equal to zero, 3 df test
- Many **EFFECTS** statement per PROC allowed
- **EFFECTS** can test full vs. reduced models
 - Useful to test set of interaction terms
SUDAAN Modeling PROCS
Common Keyword: TEST

- **TEST** options ; (5 keywords)
 - **WALDCHI** (Wald chi-square test, r df)
 - **WALDF** \(r, e \) = WALDCHI / r , e=ddf
 - **ADJWALDF** (function of WALDF)
 - **SATADJCHI** (SRS with eigenvalues)
 - **SATADJF** (SRS with eigenvalues)

- Specifies calculations to test hypotheses
 - Both default hyps & hyps that you specify

- **TEST** is optional: default is **WALDF**
More on Common Keyword: TEST

- Default **Waldf** works well most times
- **Adjwaldf** & **Satadjf** better for small ddf
 - Survey ddf = # of PSUs − # of strata
 - NHANES surveys smaller ddf: 30, 49, …
 - Survey ddf **large** for BRFSS statewide
 - Because each sample adult is a PSU (for DSS)
- **Waldchi** too liberal for small ddf
 - DB advice: avoid using Waldchi (if possible)
MODELING PROCEDURES
SAS SURVEY PROCS

Overview
3 SAS Modeling PROCS for Survey Data Analysis

- **SurveyLogistic**—logistic regression +
 - Dep Var dichotomous or > 2 levels
 - Ind Vars—continuous/categorical
- **SurveyReg**—linear regression
 - Dep Var *continuous*
 - Ind Vars—continuous/categorical
- **SurveyPHReg**—Cox proportional hazards regression (survival) analysis
SAS Survey Logistic: LINK option on MODEL Statement

- **LINK = LOGIT** (or CLOGIT, CUMLOGIT)
 - Logit or Cumulative logit model (default)
 - Dependent variable at 2 or more levels
- **LINK = GLOGIT**
 - Generalized logit function (dep var >=2 levels)
- **LINK = CLOGLOG**
 - Binary complementary log-log model or cumulative complimentary log-log model
- **LINK = PROBIT**
SAS SurveyLogistic

- Wald chi-square test statistic: hypotheses
 - Recall: too liberal for small survey ddf!
- MODEL statement: specify level of binary variable for which probability is modeled
 - SAS may not choose level that YOU want
- Choose how to parameterize cat ind vars
 - Many methods, including reference group
 - Default is EFFECT (likely not what you want)
 - Specify on CLASS statement
SAS SurveyReg

- Similar to nonsurvey SAS PROC GLM
- SAS chooses how parameterize cat ind vars
 - Reference group method
 - SAS orders levels of cat var & chooses last level as reference group (formatted, internal, etc.)
 - May not be level you want for reference!
- Wald F test used to test default hypotheses & requested contrasts (only option)
 - Wald F default test in SUDAAN modeling procs
Common Features in SurveyLogistic & SurveyReg

- **MODEL** \(Y = X_1 \ X_2 \ X_3 \ X_1 \times X_2 \);
 - One model statement per PROC
- **CLASS** Specify *categorical* ind vars
 - Remaining ind vars assumed continuous
- **X1**\(\times X_2 \) acceptable for:
 - 2 continuous vars, 1 cont & 1 cat, 2 cat vars
- **X1**\(\times X_1 \) also works for X1 continuous
Common Features in SurveyLogistic & SurveyReg

- **Contrast** and **Estimate** statements-as GLM
 - Estimate & test own combination of regr coeffs
- **Test** statement: also test null hypotheses
- New statements in SAS 9.3
 - **Effect**: make new ind vars for model
 - LSMeans
 - LSMEstimate
- **Note**: SAS Effect statement **not** same as SUDAAN Effect statement
LOGISTIC REGRESSION

SUDAAN PROC LOGISTIC
SAS PROC SURVEYLOGISTIC
Dichotomous dependent variable
LOGISTIC REGRESSION Review

\[p = \Pr(y = 1) = \frac{\exp^{\alpha_o + \beta'x}}{[1 + \exp^{\alpha_o + \beta'x}]} \]

- Where \(\alpha_o \) is intercept
- \(\beta' \) is row vector of regression coefficients
- \(x \) is column vector of covariates (independent vars)
LOGISTIC REGRESSION Review

\[
\text{odds} = \frac{\Pr(y = 1)}{\Pr(y = 0)} = \exp^{\alpha_0 + \beta'x}
\]

\[
\ln \text{odds} = \alpha + \beta'x
\]

\[
\text{odds ratio} = \exp^{\beta_1}
\]
Logistic Regression Example

Consider Various Models
Only 3 Independent Variables
Logistic Regression
Example

- Dependent = Binge Drinking (old defn)
 - Binge01, 1=drinker, 0=not
- Sex & Race4 : 2 categorical ind vars
- Age: use as continuous or categorical?

- **First**, do bivariate analysis to confirm relationship of each ind var to binge
LecEx07
Crosstab & SurveyFreq

- **Tables** (Race4 Sex AgeDec Sex*Race4) * Binge01;

- **Results**: Binge drinking related to:
 1. **Sex**: males higher prevalence
 2. **Age**: prevalence declines with higher age
 3. **Race/ethnicity**: BNH lower? Hisp higher?
Decisions about Age in Logistic Regression Model

• Age categorical or **continuous**?
 • Fewer parameters to estimate if continuous

• Continuous age **linear**, quadratic, higher?

• **Center** age? Yes, if.....
 • Age=0 not in dataset (18 thru 97)
 • Intn of Age with race or sex, or age quadratic

• **How center?** Range midpoint = 57.5
 • AgeL57 = Age – 57.5
LecEx 8A SUDAAN
Main Effects Model - 6 coeffs

- Proc **RLogist**
- **Class** Race4 Sex ;
- **Model** Binge01 = Sex Race4 AgeL57 ;
- **Reflevel** Sex = 2 Race4 = 1 ;
- **Test** WaldF WaldChi ; why 2?
- **Print** ; /* default printout */
- **Print** / HLTest = ALL ; for GOF
Count # Regression Coeffs for This Model = 6

- Intercept (1 coefficient)
- Sex (1 coefficient)
- Race (3 coefficients)
- AgeL57 (1 coefficient)

- 5 df = sex, race, & AgeL57 (full model without intercept)
• **Effects** Sex / name = “DB Test for Main Effect of Sex” ;

• **Effects** Race4 / name = “DB Test for Main Effect of Race/Ethnicity” ;

• **Effects** AgeL57 / name = “DB test for Main Effect of AgeL57” ;
Hosmer Lemeshow GOF SUDAAN RLOGIST

- Use Wald chi-square to test model effects:
 - HL GOF p-value = 0.1733
- Use Wald F test to test model effects:
 - HL GOF p-value = 0.1721
- Main effects model looks plausible
- No GOF test in SAS SurveyLogistic
LecEx 8B Logistic Regr SAS SurveyLogistic

- **Proc** **SurveyLogistic** **NoMcar** **data =**
- **Class** **sex** (ref='2=female') **race4** (ref='1=WNH') / **param = ref** ;

- **Model** **binge01** (**Event** = '1=yes') =
 sex **race4** **AgeL57** ;
- **Units** **age = 1 5 10** ;
• Contrast 'sex effect 1 df' sex 1 ;

• Contrast 'age effect 1 df' AgeL57 1 ;

• Contrast 'race effect 3 df'
 race4 1 0 0 , race4 0 1 0 , race4 0 0 1 ;
Point estimates of popn regression coeffs and odds ratios: **exactly same**

Estimated s.e. of estimated regr coeffs & odds ratio CI: **very close or same**

Wald chi-square statistics: **very close**

P-values: **very close or same**

Item nonresponse method same: NoMcar
Interpretation of Main Effects Model: Example 8

<table>
<thead>
<tr>
<th>Effect</th>
<th>Regr</th>
<th>p-value</th>
<th>OR</th>
<th>CI on OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgeL57</td>
<td>-0.04</td>
<td><.0001</td>
<td>0.96</td>
<td>.95,.96</td>
</tr>
<tr>
<td>Male</td>
<td>1.36</td>
<td><.0001</td>
<td>3.89</td>
<td>3.2, 4.7</td>
</tr>
<tr>
<td>BNH</td>
<td>-0.61</td>
<td><.0001</td>
<td>0.54</td>
<td>.42, .69</td>
</tr>
<tr>
<td>Hisp</td>
<td>0.13</td>
<td>.63</td>
<td>1.13</td>
<td>.68, 1.89</td>
</tr>
<tr>
<td>OtherNH</td>
<td>-0.43</td>
<td>.08</td>
<td>0.65</td>
<td>.40, 1.05</td>
</tr>
</tbody>
</table>
Alternate Program to 8B with AgeL57, Pgm 8C with Effect

- One option on Effect is Polynomial
 - Several options under Polynomial

Effect AgePoly1C = polynomial (age / degree = 1 details standardize (method = range) = center) ;

Model Binge01 (Event = '1=yes') = sex race4 AgePoly1C ;
Compare Pgs 8B & 8C with SAS SurveyLogistic

- Outputs 8B & 8C same answers, except...

- 8C does **not** give odds ratio for **constructed** effect AgePoly1C

- Whereas 8B gives odds ratio for dataset variable AgeL57
Include a Quadratic Term for Age? LecEx09Q

- Model so far: Sex, Race4, AgeL57
- 9QA. Sudaan RLogist with AgeL57sq
- 9QB. SAS SurveyLogistic with AgeL57sq or with AgeL57 * AgeL57
- 9QC. SAS SurveyLogistic: Effect Poly (age) to add linear & quadratic centered age

- Conclusion: not obvious that quadratic term needed. Forget it for now.
Do We Need to Include Interaction Terms in Model?

- Main effects model may be OK
 - H-L test not terribly suspicious ($p=0.1721$)
- Investigate if interactions needed
- 1^{st}, model with all possible interactions
 - Three 2-factor interactions
 - Sex * race4, sex * AgeL57, race4 * AgeL57
 - One 3-factor interaction sex*race4*AgeL57
 - All interaction terms: 10 popn regr coeffs
- 10 df custom contrast: all 10 coeffs = zero
• PROC RLOGIST
• CLASS SEX RACE4 ;
• MODEL Binge01 = Sex Race4 AgeL57 Sex * Race4 Sex * AgeL57 Race4 * AgeL57 Sex * Race4 * AgeL57 ;
• REFLEVEL Sex = 2 Race4 = 1 ;
• TEST WaldF WaldChi ;
LecEx 9A SUDAAN Logistic
All intns: 16 regr coeffs (cont)

- PRINT ; /* default printout */
- PRINT / HLTest = ALL ;

- Effects Sex * Race4 Sex * AgeL57
 Race4 * AgeL57 Sex * Race4 * AgeL57 / Name = “Test all Interactions 10 df” ;
 - Easy way to write CONTRAST statement
 - Don’t need to deal with 30 positions in regr coefficient vector (16 + 14 defined as zero)
LecEx 9B All Intns.
SurveyLogistic: 16 coeffs

- Proc surveylogistic data =
- Class sex (ref='2=female') race4 (ref='1=WNH') / param = ref ;
- Model binge01 (EVENT='1=yes') = sex race4 ageL57 sex * race4 sex * ageL57 race4 * ageL57 sex * race4 * ageL57 ;
SurveyLogistic: CONTRAST

- **Contrast** '10 df interaction test'

 sex * race4 1 0 0 0 ,
 sex * race4 0 1 0 0 ,
 sex * race4 0 0 1 1 ,
 sex * ageL57 1 ,
LecEx 9B (cont)
SurveyLogistic: CONTRAST

Race4 * AgeL57 1 0 0 ,
Race4 * AgeL57 0 1 0 ,
Race4 * AgeL57 0 0 1 ,
Sex * Race4 * AgeL57 1 0 0 ,
Sex * Race4 * AgeL57 0 1 0 ,
Sex * Race4 * AgeL57 0 0 1 ;
run ;
Consider a Reduced Model

- Three factor interaction seems not needed

- Model now with three 2-factor interactions
 - Sex * race4, sex * age, race4 * age

- 7 df custom contrast: all 7 coeffs = zero
LecEx 10A
SUDAAN: 13 regr coeffs

- **PROC RLOGIST**
- **Class** SEX RACE4 ;
- **Model** Binge01 = Sex Race4 AgeL57
 Sex * Race4 Sex * AgeL57
 Race4 * AgeL57 ;
- **RefLevel** Sex = 2 Race4 = 1 ;
- **Test** WaldF WaldChi ;
LecEx 10A (cont)
SUDAAN: 13 regr coeffs

- PRINT ; /* default printout */
- PRINT / HLTest = DEFAULT ;

- Effects Sex * Race4 Sex * AgeL57 Race4 * AgeL57 / NAME = “Interaction test with 7 df” ;
LecEx 10B
SurveyLogistic: 13 coeffs

• Proc surveylogistic data =
• Class sex (ref='2=female') race4 (ref='1=WNH') / param = ref ;

• Model binge01 (Event='1=yes') = sex race4 AgeL57 sex * race4 AgeL57 * sex AgeL57 * Race4 ;
LecEx 10B (cont)
SurveyLogistic: CONTRAST

- **Contrast '7 df interaction test'**
 - Sex * Race4 1 0 0 ,
 - Sex * Race4 0 1 0 ,
 - Sex * Race4 0 0 1 ,
 - AgeL57 * Sex 1 ,
 - AgeL57 * Race4 1 0 0 ,
 - AgeL57 * Race4 0 1 0 ,
 - AgeL57 * Race4 0 0 1 ;
Model Conclusions So Far

- Main effects model (ex 8) maybe OK
- Model with all interactions (ex 9)
 - 3-factor interaction not needed
- Model with all 2-factor interactions (ex 10)
 - 2-factor intn Race4 * age may be needed
- Next step: include three 2-factor intns & test null hypothesis that sex * ageL57 & sex * race4 not needed in model
LecEx11A SUDAAN
13 coeffs, EFFECTS

- **PROC RLOGIST.** ;
- **Class** SEX RACE4 ;
- **Model** Binge01 = Sex Race4 AgeL57 sex * race4 sex * ageL57 race4 * ageL57 ;
- **Effects** sex * race4 sex * ageL57 / name = “Intn Test with 4 df” ;
Proc surveylogistic *data =*

Class sex (ref='2=female') race4 (ref='1=WNH') / param = ref ;

Model binge01 (Event='1=yes') = sex race4 ageL57 sex*ageL57 race4*ageL57 ;

Contrast '4 df interaction test'

Sex * AgeL57 1 , Sex*Race4 1 0 0 0 ,
Sex*Race4 0 1 0 , Sex*Race4 0 0 1 ;
LecEx 12A SUDAAN
Only one interaction

- PROC RLOGIST.. ;
- CLASS SEX RACE4 ;
- MODEL Binge01 = SEX RACE4 AgeL57 race4 * ageL57 ;
- H-L GOF test: fit seems OK (p = .2140)
- Race4* ageL57 p-value: .0011
- SUDAAN prints out “odds ratios” not relevant, i.e. ones with race4 or ageL57
LecEx 12B only one intn
SurveyLogistic

- Proc surveylogistic data =
- Class sex (ref='2=female') race4 (ref='1=WNH') / param = ref ;
- MODEL binge01 (Event='1=yes') = sex race4 ageL57 race4*ageL57 ;
- SAS prints out only one OR, for sex: 3.92 (3.25, 4.71)
2 Candidates for Logistic Regression Model So Far

- Main effects model (HL p-value = .172)
 - Sex, Race4, AgeL57
 - Simpler, no interactions
 - Usual interpretation of odds ratios
- Model with 1 intn term (HL p-value = .214)
 - Sex, Race4, AgeL57, Race4 * AgeL57
 - More difficult to interpret
 - Interaction appears stat sign, makes sense
How Summarize Model with the Intn? Use Odds Ratios

- Sex OR = 3.92, easy
- Race/Ethnicity odds ratios
 - ORs for AgeL57=0, i.e. age = 57.5 years
 - Sudaan output, not SAS
 - Race ORs for other values of age: can program
- Age odds ratio (1 or more years)
 - OR in output for NHW
 - Age OR for other Race/Eth: can program
Disadvantages of Presenting Results Using Odds Ratios

- Not direct to get software to do the calculations for you (although possible)
- Must present many odds ratios
 - Age OR for 3 levels of race/ethnicity
 - Race/Eth ORs for several values of age
- Odds ratios exaggerate strength of relationship if outcome prevalence not rare
Another Way to Present Results of Model with Intn

- Use predicted marginals
- Use prevalence ratios (not odds ratios)

Advantages:
- Results in terms of probabilities, not OR
- More concise than reporting many ORs
PREDICTED MARGINALS
PREDICTED RISK RATIOS

For Logistic Regression
SUDAAN only
Useful in main effects models or those with interaction(s)
Predicted Marginals

Logistic Regression

- Assume categorical independent variable at four levels, e.g. race/ethnicity
- Assume level 1 is reference level (WNH)
- Four regression coefficients for this variable are: \(\lambda_1 (= 0), \lambda_2, \lambda_3, and \lambda_4 \)
- Other variables in model (e.g. age, sex)
- Model could also have interactions
Calculate Predicted Marginal for Level 1 of Categorical Var

- Assign each sample obsn in model the value of level 1 (WNH) for categorical variable
- Use fitted model to predict, for each sample obsn in model, probability that $y = 1$
 - Use covariate vector x_i for that obsn
- Take weighted average of these predicted probabilities over sample obns in model
- This is predicted marginal for level 1
Predicted Prob: Sample Obsn i at Level 1 of Race/Eth (WNH)

\[p_{i1} = \Pr(y_i = 1 | \text{level1}) = \frac{\exp{\hat{\alpha}_0 + 0 + \hat{\beta}'x_i}}{[1 + \exp{\hat{\alpha}_0 + 0 + \hat{\beta}'x_i}]} \]
Predicted Marginal: Level 1 (WNH) of Categorical Variable

\[p_1 = \Pr(y = 1 | \text{level}1) = \frac{\sum_{i=1}^{i=r} w_i \ p_{i1}}{\sum_{i=1}^{i=r} w_i} \]
Predicted Marginal: Level 2 (BNH) of Categorical Variable

\[p_{i2} = \Pr(y_i = 1 \mid \text{level 2}) = \frac{\exp(\alpha_0 + \lambda_2 + \beta' x_i)}{[1 + \exp(\alpha_0 + \lambda_2 + \beta' x_i)]} \]

\[p_2 = \sum_{i=1}^{i=r} w_i \hat{p}_{i2} / \sum_{i=1}^{i=r} w_i \]
Predicted Marginal: Level 3 (Hisp) of Categorical Variable

\[
p_{i3} = \Pr(y_i = 1 \mid \text{level3}) = \frac{\exp^{\hat{\alpha}_0 + \hat{\lambda}_3 + \beta' x_i}}{[1 + \exp^{\hat{\alpha}_0 + \hat{\lambda}_3 + \beta' x_i}]}
\]

\[
p_3 = \sum_{i=1}^{i=r} w_i \ p_{i3} / \sum_{i=1}^{i=r} w_i
\]
Predicted Marginal: Level 4 (OthNH) of Categorical Variable

\[p_{i4} = \Pr(y_i = 1 \mid level 4) = \frac{\exp^{\hat{\alpha}_0 + \hat{\lambda}_4 + \beta' x_i}}{[1 + \exp^{\hat{\alpha}_0 + \hat{\lambda}_4 + \beta' x_i}]} \]

\[p_4 = \sum_{i=1}^{i=r} w_i p_{i4} / \sum_{i=1}^{i=r} w_i \]
Predicted Marginal

- The column vector X_i for sample obsn i is not considered to be “fixed”
 - I.e. it has sampling variance
 - Assumption to obtain s.e. for each predicted marginal
- Probably realistic assumption in human population sample surveys
- Which is why some survey data analysts prefer predicted marginals over conditional marginals
Predicted Marginal How to Think About It

- Estimate logistic regression model for popn, with ind categorical var of interest
- For each sample obsn i in model, use model to predict prob of outcome “as if” obsn was assigned to level 1 of cat var & all other covariate values are what they are for that obsn
- Now assign that same sample obsn to level 2 of cat var, & use model to predict outcome prob
- Continue with remaining levels of cat var
- Conceptually, a way of standardizing on cat var
Why Korn & Graubard Like Predicted Marginals

- Results are *probabilities* rather than regression coefficients or odds ratios
- The probabilities are adjusted for other variables in the model
- Convey scale of differences between levels of a cat var better than regression coefficients or odds ratios do
- Easier to see effect of interactions between the cat var and a covariate
Why Korn & Graubard Like Predicted Marginals (cont)

- Problem to compare 2 levels of a cat var when neither is reference level (difference of regression coeffs)
- See magnitude of effect of including or excluding a covariate in the model
 - By calculating predicted marginals with & then without covariate in model
Some References on Predicted Margins

- Graubard & Korn “Predictive Margins....”
- Korn & Graubard, Analysis of Health Surveys
 - John Wiley, 1999, Chapter 3
- SUDAAN Language Manual, Release 10 or 11
- Excellent applied paper: Potosky, Breen, Graubard, Parsons: cancer screening & health insurance, Medical Care, 1998.
Predicted Risk Ratios
SUDAAN, new in Release 10

- Logistic regression
- Calculate predicted marginals for a categorical variable
- Choose one level of categorical variable as reference level
- For each other level, take ratio of predicted marginal of level to predicted marginal of reference level
Definition of Predicted Risk Ratios

- Categorical variable at 4 levels, e.g. Race4
- Predicted marginals:
 \[
 \hat{p}_1, \hat{p}_2, \hat{p}_3, \text{and } \hat{p}_4
 \]
- Predicted risk ratios (level 1 is reference)
 \[
 rr_2 = \frac{\hat{p}_2}{\hat{p}_1}, \quad rr_3 = \frac{\hat{p}_3}{\hat{p}_1}, \quad rr_4 = \frac{\hat{p}_4}{\hat{p}_1}
 \]
Why Use Predicted Risk Ratios (or Prev Ratios)

- Idea analogous to odds ratios
- **But** risk ratio is ratio of probabilities (prev or risk), & probabilities adjusted for all other covariates in the model
- **Note:** for common health outcomes, OR always larger than risk or prevalence ratio, sometimes substantially
 - OR may exaggerate strength of association
LecEx13A SUDAAN
Ask for Predicted Marginals

- proc RLOGIST data =
- MODEL binge01 = SEX RACE4 AgeL57
 RACE4 * AgeL57 ;
- CLASS SEX RACE4 ;
- REFLEVEL sex = 2 race4 = 1 ;
- PREDMARG RACE4 SEX ;
- predmarg ageL57 / ageL57 = 7.5 -2.5 -12.5
 -22.5 -32.5 ; /* Choose values for cont age */
LecEx13B SUDAAN
Ask for Predicted Risk Ratios

- proc RLOGIST data =
- Model binge01 = SEX RACE4 AgeL57
 RACE4 * AgeL57 ;
- Class Sex Race4 ;
- RefLevel sex = 2 race4 = 1 ;
- PredMarg Race4(1) Sex(2) / adjrr ;
- PredMarg ageL57 (-32.5) / ageL57 = 7.5
 -2.5 -12.5 -22.5 -32.5 ;
LecEx13 Est. Pred Margs & Risk(Prev) Ratios: Intn Model

<table>
<thead>
<tr>
<th>Ind. Var.</th>
<th>Pred Marg</th>
<th>s.e. PredMrg</th>
<th>Risk Ratio</th>
<th>CI RiskRatio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>.2176</td>
<td>.01</td>
<td>3.04</td>
<td>(2.61, 3.55)</td>
</tr>
<tr>
<td>Female</td>
<td>.0715</td>
<td>.005</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>WNH</td>
<td>.1637</td>
<td>.007</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>BNH</td>
<td>.1043</td>
<td>.009</td>
<td>0.64</td>
<td>(.53, .77)</td>
</tr>
<tr>
<td>Hisp</td>
<td>.1790</td>
<td>.03</td>
<td>1.09</td>
<td>(.76, 1.57)</td>
</tr>
<tr>
<td>OtherNH</td>
<td>.1166</td>
<td>.02</td>
<td>0.71</td>
<td>(.48, 1.05)</td>
</tr>
<tr>
<td>Age=25</td>
<td>.2428</td>
<td>.011</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Age=35</td>
<td>.1765</td>
<td>.007</td>
<td>0.73</td>
<td>(.70, .76)</td>
</tr>
<tr>
<td>Age=45</td>
<td>.1245</td>
<td>.005</td>
<td>0.51</td>
<td>(.47, .56)</td>
</tr>
<tr>
<td>Age=55</td>
<td>.0861</td>
<td>.005</td>
<td>0.35</td>
<td>(.31, .41)</td>
</tr>
</tbody>
</table>
• Compare Main Effects model to model with intn

`proc RLogist data =`

• `Model binge01 = Sex Race4 AgeL57 ;`

• `Class Sex Race4 ;`

• `RefLevel sex = 2 race4 = 1 ;`

• `PredMarg Race4 Sex / adjrr ;`

• `PredMarg ageL57 (-32.5) / ageL57 = 7.5 - 2.5 -12.5 -22.5 -32.5 ;`
Compare Model with Intn to Model with No Intn

<table>
<thead>
<tr>
<th></th>
<th>PrdMrg Intn</th>
<th>PrdMrg No Intn</th>
<th>PrevRatio Intn</th>
<th>PrevRatio No Intn</th>
<th>OR No Intn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>.2176</td>
<td>.2177</td>
<td>3.04</td>
<td>3.05</td>
<td>3.89</td>
</tr>
<tr>
<td>Female</td>
<td>.0715</td>
<td>.0714</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>WNH</td>
<td>.1637</td>
<td>.1626</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>BNH</td>
<td>.1043</td>
<td>.1004</td>
<td>0.64</td>
<td>0.62</td>
<td>0.54</td>
</tr>
<tr>
<td>Hisp</td>
<td>.1790</td>
<td>.1783</td>
<td>1.09</td>
<td>1.10</td>
<td>1.13</td>
</tr>
<tr>
<td>OtherNH</td>
<td>.1166</td>
<td>.1167</td>
<td>0.71</td>
<td>0.72</td>
<td>0.65</td>
</tr>
<tr>
<td>Age=25</td>
<td>.2428</td>
<td>.2399</td>
<td>Ref</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Age=35</td>
<td>.1765</td>
<td>.1747</td>
<td>0.73</td>
<td>0.73</td>
<td>10yr=0.65</td>
</tr>
<tr>
<td>Age=45</td>
<td>.1245</td>
<td>.1235</td>
<td>0.51</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Age=55</td>
<td>.0861</td>
<td>.0852</td>
<td>0.35</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Age=65</td>
<td>.0590</td>
<td>.0577</td>
<td>0.24</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>
Estimation of Odds Ratios with Interactions in Model

Interaction term contains one categorical variable and one continuous variable
Dealing with a two-way interaction in Logistic Model

- Use model of LecEx12: Race4*AgeL57
- For each level of Race4, estimate age regression coefficient & odds ratio for 1 (or more) year(s) increase in age
- For selected values of AgeL57, estimate 3 odds ratios for race/ethnicity
- Program these calculations in SUDAAN RLogist and SAS SurveyReg
LecEx14A SUDAAN RLOGIST
Age Regr Coeff & OR, by Race4

- **Model** \(\text{Binge01} = \text{Sex} \times \text{Race4} \times \text{AgeL57} \times \text{Race4} \times \text{AgeL57} ; \ /* \text{age continuous} */ \)

- **Effects** \(\text{AgeL57} / \text{Race4} = 1 \ \exp \ \text{name= "Age Effect & Age OR, WNH" ;} \)

- Effects statement tests **null hyp**: popn age regr coeff **for WNH** = zero. Estimated age regr coeff for WNH is exponentiated to give age OR **for WNH**.
LecEx14A SUDAAN RLOGIST
Age Regr Coeff & OR, by Race4

- **Effects** ageL57 / Race4 = 2 exp name = "Age Effect & Age OR, BNH" ;
- **Effects** ageL57 / Race4 = 3 exp name = "Age Effect & Age OR, Hisp";
- SUDAAN not print estimated regr coeff for age for each level of Race4
Model

Binge01 = Sex Race4 AgeL57 Race4 * AgeL57 ; /* age continuous */

Contrast

’WNH one year’ ageL57 1 /
estimate = both ; /* regr coeff + OR*/

Contrast

’WNH ten years’ ageL57 10 /
estimate = exp ; /* OR only */

Above statements work because WNH is reference level for Race4
LecEx14B SAS Survey Logistic
Age Regr Coeff & OR, by Race4

- Contrast 'BNH one year'
 ageL57 1 race4 * ageL57 1 0 0 /
 estimate = both ;

- Contrast 'BNH ten years'
 ageL57 10 race4 * ageL57 10 0 0 /
 estimate = exp ;
Contrast ‘Hisp one year'

\[
\text{ageL57} \ 1 \ \text{race4} \ * \ \text{ageL57} \ 0 \ 1 \ 0 / \ \text{estimate} = \text{both} ;
\]

Contrast ‘Hisp ten years'

\[
\text{ageL57} \ 10 \ \text{race4} \ * \ \text{ageL57} \ 0 \ 10 \ 0 / \ \text{estimate} = \exp ;
\]
Estimated OR & CI for binge drink: 10 year age increase

- WNH: \(.60 \ (.56, .65) \)
 SurveyLogistic
- BNH: \(.80 \ (.71, .90) \)
 & Sudaan
- Hisp: \(.66 \ (.47, .92) \)
- OthNH: \(.65 \ (.47, .91) \)

- BNHs differ from WNHs on age regr coeff
 - (1 df default test)

- Age ORs larger for BNH than for WNH
 - Probably because BNH binge prevalence lower
Recap: Estimating Odds Ratios with Intn in Model

- **LecEx14.** Race4 * AgeL57 interaction
 - Estimate age effect at each level of Race4
 - Sudaan Logist or SAS SurveyLogistic

- **Conclusion:** BNHs different age effect

- **LecEx15.** Race4 * AgeL57 interaction
 - Estimate Race effect for varying values of age
 - Sudaan Effects statement: not work!
 - Can be done in SAS SurveyLogistic
• Not able to use SUDAAN EFFECTS statement for following two calculations:
 • 1. 3 df test for Race4 at a chosen level of age
 • 2. Three race/ethnicity odds ratios for a chosen level of age
• Seems cannot condition on value for a continuous variable when using EFFECTS statement in SUDAAN
LecEx15B SAS SurveyLogistic
Race/Ethnicity ORs, by AGE

- **Model** Binge01 = Sex Race4 AgeL57 Race4 * AgeL57 ; /* age continuous */

- **Contrast** 'BNH/WNH OR age = 25'
 race4 1 0 0 Race4 * ageL57 -32.5 0 0
 / estimate = exp ;
LecEx15B SAS SurveyLogistic
Race/Ethnicity ORs, by AGE

• Contrast 'Hisp/WNH OR age = 25'
race4 0 1 0 Race4 * ageL57 0 -32.5 0
/ estimate = exp ;

• Contrast 'OthNH/WNH OR age = 25'
race4 0 0 1 Race4 * ageL57 0 0 -32.5
/ estimate = exp ;
LecEx15B SAS SurveyLogistic
Race Effect, by AGE

- Contrast '3 df test of effect of Race4 at AGE = 25'
 race4 1 0 0 Race4 * ageL57 -32.5 0 0 0,
 race4 0 1 0 Race4 * ageL57 0 -32.5 0,
 race4 0 0 1 Race4 * ageL57 0 0 -32.5 ;
15B Results: Effect of & ORs for Race/Eth at a Given Age

- Effect of race/ethnicity is stat significant for ages 25, 35 & 45 but not for 55 & 65
- Race/ethnicity ORs for ages 55 & 65 have CIs that all include 1.0
- Age 25, BNH/WNH OR = .39 (.28, .54)
- Age 35, BNH/WNH = .52 (.41, .66)
- Age 55, BNH/WNH = .91 (.68, 1.22)
Extensions of Workshop Examples on Interactions

- Two way interaction: between 2 vars but both categorical, rather than one categorical & one continuous
- Can be done in both RLogist and SurveyLogistic: syntax similar to examples here, but some differences
- 3 way interaction: likely complicated
 - Predicted marginals perhaps only path
Linear Regression

Sudaan Regress
SAS SurveyReg
A Few Comments on Linear Regression

- Few continuous dep vars in BRFSS
 - BMI, # cigs smoked per day
- Statements illustrated today in RLogist & in SurveyLogistic can be useful
 - Sudaan: Effects, Contrast,
 - SAS: Effect, Contrast, Estimate
- Easier, since is a linear model
REFERENCES

References on Sample Survey Design and Analysis
Recommended Books: Surveys & Their Analysis

 - Introduction/overview of all aspects of surveys

 - Strategies for survey data analysis, math-stat useful
Recommended Books: Sampling Methods & Analysis

 - Short, concepts oriented, condensed Korn/Graubard

 - Applied introduction to sampling (algebra)
 - Clear explanations and real-life examples

Some Useful WEB Sites

- http://www.amstat.org/sections/srms
 - ASA, Survey Research Methods Section
 - What Is A Survey? booklets excellent
 - Software for survey data
- http://www.aapor.org
 - Go to Resources & Education, then Researchers, then: Best Practices, Standard Definitions Response Rate (2011), Poll/Survey FAQ. Excellent discussions.
Special Issues of Public Opinion Quarterly

- Vol. 70, No. 5, 2006. “Special Issue: Nonresponse Bias in Household Surveys”
- Vol. 71, No. 5, 2007. “Special Issue: Cell Phone Numbers & Telephone Surveying in U.S.
- Vol. 74, No. 5, 2010. “Special Issue: Total Survey Error”
Some Survey Research Journals

Lab Exercise
Logistic Regression

- Dependent variable: Diabetes yes or no
- Independent vars: age, race/eth, sex, any other variables of interest in dataset
- Develop a logistic regression model