AmeriHealth Caritas Louisiana

<table>
<thead>
<tr>
<th>National Imaging Associates, Inc.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical guidelines</td>
</tr>
<tr>
<td>HEART MRI</td>
</tr>
<tr>
<td>Guideline Number: NIA_CG_028</td>
</tr>
<tr>
<td>Implementation Date: January 2021TBD</td>
</tr>
</tbody>
</table>

Genetic conditions that predispose to aortic aneurysm

GENERAL INFORMATION

It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. All prior relevant imaging results, and the reason that alternative imaging cannot be performed must be included in the documentation submitted.

INDICATIONS FOR CARDIAC MAGNETIC RESONANCE (CMR)

Congenital Heart Disease (CHD) (Sachdeva 2020)

Evaluation of cardiac structure, function, measurement of shunts and cardiac and extra-cardiac conduits in patients with congenital heart disease

For all indications below, either CT or CMR can be done

- All defects: evaluation prior to planned repair and evaluation for change in clinical status and/or new concerning signs or symptoms
- Patent Ductus Arteriosus: routine surveillance (1-2 years) in a patient with postprocedural aortic obstruction
- Eisenmenger Syndrome and Pulmonary Hypertension associated with CHD: Evaluation due to change in pulmonary arterial hypertension-targeted therapy
- Initial evaluation with suspicion of pulmonary hypertension following CHD surgery
- Aortic Stenosis or Regurgitation:
 - Routine surveillance (6-12 months) in a child with aortic sinus and/or ascending aortic dilation with increasing z-scores
 - Routine surveillance (2-3 years) in a child with aortic sinus and/or ascending aortic dilation with stable z-scores (CMR only)

* National Imaging Associates, Inc. (NIA) is a subsidiary of Magellan Healthcare, Inc.
Aortic Coarctation and Interrupted Aortic Arch:
Routine surveillance (3–5 years) in a child or adult with mild aortic coarctation
Postprocedure (surgical or catheter-based) routine surveillance (3–5 years) in an asymptomatic patient to evaluate for aortic arch aneurysms, in-stent stenosis, stent fracture, or endoleak
Coronary anomalies
Tetralogy of Fallot:
Postoperative routine surveillance (2–3 years) in a patient with PR and preserved ventricular function (CMR only)
Routine surveillance (2–3 years) in an asymptomatic patient with no or mild sequelae (CMR only)
Routine surveillance (2–3 years) in a patient with valvular or ventricular dysfunction, RVOT obstruction, branch pulmonary artery stenosis, arrhythmias, or presence of an RV-to-PA conduit
Double Outlet Right Ventricle: Routine surveillance (3–5 years) in an asymptomatic patient with no or mild sequelae (CMR only)
D-Loop Transposition of the Great Arteries (postoperative):
Routine surveillance (3–5 years) in an asymptomatic patient
Routine surveillance (1–2 years) in a patient with dilated neo-aortic root with increasing Z-scores, or neo-aortic regurgitation
Routine surveillance (3–12 months) in a patient with ≥moderate systemic AV valve regurgitation, systemic RV dysfunction, LVOT obstruction, or arrhythmias
Congenitally Corrected Transposition of the Great Arteries:
Unrepaired: routine surveillance (3–5 years) in an asymptomatic patient
Postoperative: routine surveillance (3–5 years) in an asymptomatic patient
Postoperative anatomic repair: routine surveillance (6–12 months) in a patient with valvular or ventricular dysfunction, right or left ventricular outflow tract obstruction, or presence of an RV-to-PA conduit
Postoperative physiological repair with VSD closure and/or LV-to-PA conduit: routine surveillance (3–12 months) in a patient with ≥moderate systemic AV valve regurgitation, systemic RV dysfunction, and/or LV-to-PA conduit dysfunction
Truncus Arteriosus: routine surveillance (1–2 years) in an asymptomatic child or adult with ≥moderate truncal stenosis and/or regurgitation
Single-Ventricle Heart Disease:
Postoperative routine surveillance (3–5 years) in an asymptomatic patient
Routine surveillance (1–2 years) in an asymptomatic adult postoperative Stage 2 palliation (CMR only)
Ebstein Anomaly and Tricuspid Valve dysplasia (only CMR indicated):
Evaluation prior to planned repair and evaluation for change in clinical status and/or new concerning signs or symptoms
Pulmonary Stenosis (only CMR indicated)
Unrepaired: routine surveillance (3–5 years) in an asymptomatic adult with PS and pulmonary artery dilation
Postprocedural (surgical or catheter-based): routine surveillance (1–3 years) in an asymptomatic adult with moderate or severe sequelae
Pulmonary Atresia (postprocedural complete repair): routine surveillance (1–3 years) in an asymptomatic adult with ≥ moderate sequelae

- Assessment of right ventricle (RV) size and function in repaired Tetralogy of Fallot, systemic right ventricles and other conditions associated with RV volume and pressure overload
- Sinus-Venous defects
- Vascular rings
- Identification of anomalous pulmonary venous connections
- Quantification of valvular regurgitation in patients with congenital heart disease
- Congenital Aortic Disease (such as coarctation, complete interruption or pseudo-coarctation of the aorta
 - Assess post-operative complications, after surgery for coarctation, such as restenosis and pseudoaneurysm
- Baseline imaging of patients with congenital pulmonary stenosis
- Initial screening for suspected coronary anomalies
- Evaluation of arteriovenous fistulas with a continuous murmur
- Evaluation of the great arteries and veins in patients with prior atrial baffle procedures and congenitally corrected transposition of the great arteries

Valvular Heart Disease

- Evaluation of valvular stenosis, regurgitation, or valvular masses when transthoracic echocardiography (TTE) is inadequate (Doherty 2017)
- Pre TAVR assessment if the patient has not undergone cardiac CT of aortic annular size and shape and/or the aortic dimensions, when the patient cannot undergo cardiac CT (Otto 2017)
- Prior to transcatheter mitral valve intervention, when TTE and TEE result in uncertain assessment of the severity of mitral regurgitation (Wunderlich 2018)
- Suspected clinically significant bioprosthetic valvular dysfunction and inadequate images from TTE and TEE (Doherty 2017)

Cardiomyopathy Myocardial Dysfunction & Heart Failure (Doherty, 2019; Patel, 2013; Yancy, 2013)

- To assess systolic and diastolic function in the evaluation of a newly diagnosed cardiomyopathy
- Suspected infiltrative disease such as amyloidosis, sarcoidosis (Birnie, 2014), hemochromatosis, or endomyocardial fibrosis; if PET has not been performed
- Suspected inherited or acquired cardiomyopathy
• Evaluation after appropriate time interval following revascularization and/or optimal medical therapy to determine candidacy for ICD/CRT and/or to determine optimal choice of device
• Management of patients requiring cardiotoxic chemotherapy, with ONE of the following:
 • TTE has been inadequate, or discordant with prior information.
 • Candidacy for cardiotoxic chemotherapy is questionable due to borderline left ventricular dysfunction on other imaging
• Diagnosis of acute myocarditis, with suspicion based upon new, unexplained findings such as:
 o Rise in troponin not clearly due to acute myocardial infarction
 o Change in ECG suggesting acute myocardial injury or pericarditis, without evident myocardial infarction
• Assessment of hypertrophic cardiomyopathy, when TTE is inadequate for diagnosis, management or operative planning, or when tissue characterization (degree of fibrosis) will impact indications for ICD
• Arrhythmogenic right ventricular cardiomyopathy to aid in identification and diagnosis (assessment of myocardial fat, fibrosis and RV tissue characteristics), based upon reason for suspicion, such as:
 o Nonsustained ventricular tachycardia (VT)
 o Unexplained syncope
 o ECG abnormalities
 o First degree relatives with positive genotype for ARVD
• Noncompaction cardiomyopathy to aid in the diagnosis (measurement of compacted to noncompacted myocardium) when TTE is suggestive
• Clinical symptoms and signs consistent with a cardiac diagnosis known to cause presyncope/syncope (including but not limited to hypertrophic cardiomyopathy)
• Pulmonary hypertension in the absence of severe valvular disease

Valvular Heart Disease

• Evaluation of valvular stenosis, regurgitation, or valvular masses when transthoracic echocardiography (TTE) is inadequate (Doherty, 2017)
• Pre TAVR assessment if the patient has not undergone cardiac CT (Otto, 2017)
• Prior to transcatheter mitral valve intervention, when TTE and TEE result in uncertain assessment of the severity of mitral regurgitation (Bonow, 2020; Wunderlich, 2018)
• Suspected clinically significant bioprosthetic valvular dysfunction and inadequate images from TTE and TEE (Doherty, 2017)

Evaluation of Intra- and Extra-Cardiac Structures

• Initial evaluation of cardiac mass, suspected tumor or thrombus or potential cardiac source of emboli
• Re-evaluation of intracardiac mass when findings would change therapy
- Suspected cardiac mass, paravalvular abscess, differentiation of tumors from thrombi, and differentiation of benign vs. malignant tumors (when TTE and/or TEE images are inadequate)
- Evaluation of pericardial disease to provide structural and functional assessment and differentiate constrictive vs restrictive physiology
- Assessment of left ventricular pseudoaneurysm, when TTE was inadequate
- Identification and characteristics of coronary aneurysms or anomalous coronary arteries

Pre-procedure Evaluation for Closure of ASD or PFO

- For assessment of atrial septal anatomy and atrial septal aneurysm
- For assessment of suitability for percutaneous device closure

Imaging for Evaluation of left atrial Appendage Occlusion Device

- Intraprocedural to guide deployment of the device
- For assessment of procedural complications

Assessment Following LAA Occlusion Device

- For surveillance at 45 days or FDA guidance, if TEE or Heart CT was not done, to assess for:
 - Device stability
 - To exclude device migration
 - To assess for device leaks

Pre-Ablation Planning

- Evaluation of left atrium and pulmonary veins prior to radiofrequency ablation for atrial fibrillation, if cardiac CT has not been done

Aortic Pathology

- CT, MR, or echocardiogram can be used for screening and follow up, with CT and MR preferred for imaging beyond the proximal ascending thoracic aorta
- Screening of first-degree relatives with a history of thoracic aortic aneurysm or dissection
- Six-month follow-up after initial diagnosis of thoracic aortic aneurysm to measure rate of change
• Annual follow up for an enlarged thoracic aortic aneurysm (usually defined as > 4.4 cm)
• Biannual (2x/year) follow up of enlarged aortic root or showing growth rate ≥ 0.5 cm/year
• Screening of first degree relative with a bicuspid aortic valve
• Re-evaluation (<1 y) of the size and morphology of the aortic sinuses and ascending aorta in patients with a bicuspid AV and an ascending aortic diameter >4 cm with 1 of the following:
 o Aortic diameter >4.5 cm
 o Rapid rate of change in aortic diameter
 o Family history (first-degree relative) of aortic dissection
• Patients with Turner’s syndrome annually if an abnormality exists; if initial study normal can have imaging every 5 - 10 years
• Evaluation in patients with known or suspected connective tissue disease or genetic conditions that predispose to aortic aneurysm or dissection, such as Marfan’s, Ehler’s Danlos or Loetz- Dietz syndrome (at the time of diagnosis and 6 months thereafter), followed by annual imaging (can be done more frequently if > 4.5 cm or rate of growth > 0.5 cm/year - up to twice per year 2x/yr.)

Congenital Heart Disease (CHD) (Sachdeva, 2020)

• For all indications below, either CT or CMR can be done
• All lesions: evaluation prior to planned repair and evaluation for change in clinical status and/or new concerning signs or symptoms
• Patent Ductus Arteriosus: routine surveillance (1-2 years) in a patient with postprocedural aortic obstruction
• Eisenmenger Syndrome and Pulmonary Hypertension associated with CHD:
 o Evaluation due to change in pulmonary arterial hypertension-targeted therapy
 o Initial evaluation with suspicion of pulmonary hypertension following CHD surgery
• Aortic Stenosis or Regurgitation:
 o Routine surveillance (6-12 months) in a child with aortic sinus and/or ascending aortic dilation with increasing sizez-scores
 o Routine surveillance (2–3 years) in a child with aortic sinus and/or ascending aortic dilation with stable sizez-scores (CMR only)
• Aortic Coarctation and Interrupted Aortic Arch:
 o Routine surveillance (3–5 years) in a child or adult with mild aortic coarctation
Post procedure (surgical or catheter-based) routine surveillance (3–5 years) in an asymptomatic patient to evaluate for aortic arch aneurysms, in-stent stenosis, stent fracture, or endoleak

Coronary anomalies

Tetralogy of Fallot:
- Postoperative routine surveillance (2–3 years) in a patient with pulmonary regurgitation PR and preserved ventricular function (CMR only)
- Routine surveillance (2–3 years) in an asymptomatic patient with no or mild sequelae (CMR only)
- Routine surveillance (2–3 years) in a patient with valvular or ventricular dysfunction, right ventricular outflow tract RVOT obstruction, branch pulmonary artery stenosis, arrhythmias, or presence of an RV-to-PA conduit

Double Outlet Right Ventricle: Routine surveillance (3–5 years) in an asymptomatic patient with no or mild sequelae (CMR only)

D-Loop Transposition of the Great Arteries (postoperative):
- Routine surveillance (3–5 years) in an asymptomatic patient
 - Routine surveillance (1–2 years) in a patient with dilated aortic root with increasing size, with increasing Z scores, or aortic regurgitation.
- Routine surveillance (3–12 months) in a patient with moderate systemic AV valve regurgitation, systemic RV dysfunction, LVOT obstruction, or arrhythmias

Congenitally Corrected Transposition of the Great Arteries:
- Unrepaired: routine surveillance (3–5 years) in an asymptomatic patient
- Postoperative: routine surveillance (3–5 years) in an asymptomatic patient
- Postoperative anatomic repair: routine surveillance (6–12 months) in a patient with valvular or ventricular dysfunction, right or left ventricular outflow tract obstruction, or presence of an RV-to-PA conduit
- Postoperative physiological repair with VSD closure and/or LV-to-PA conduit: routine surveillance (3–12 months) in a patient with ≥moderate systemic AV valve regurgitation, systemic RV dysfunction, and/or LV-to-PA conduit dysfunction

Truncus Arteriosus: routine surveillance (1–2 years) in an asymptomatic child or adult with ≥ moderate truncal stenosis and/or regurgitation

Single-Ventricle Heart Disease:
- Postoperative routine surveillance (3–5 years) in an asymptomatic patient
- Routine surveillance (1–2 years) in an asymptomatic adult postoperative Stage 2 palliation (CMR only)

Ebstein’s Anomaly and Tricuspid Valve dysplasia (only CMR indicated):
- Evaluation prior to planned repair and evaluation for change in clinical status and/or new concerning signs or symptoms

Pulmonary Stenosis (only CMR indicated):
- Unrepaired: routine surveillance (3–5 years) in an asymptomatic adult with PS and pulmonary artery dilation
• Postprocedural (surgical or catheter-based): routine surveillance (1–3 years) in an asymptomatic adult with moderate or severe sequelae
• Pulmonary Atresia (postprocedural complete repair): routine surveillance (1–3 years) in an asymptomatic adult with ≥ moderate sequelae

Coronary Artery Disease Evaluation

(CMR as an alternative to pharmacologic MPI)

• **Stress** CMR, which is done pharmacologically, is used for the assessment of coronary artery disease when a stress echocardiogram (SE) cannot be performed.
 - If the patient cannot walk and would otherwise be a candidate for a pharmacologic MPI a stress CMR can be performed
 - If the patient is able to walk and is having an MPI for another reason (LBBB, CABG, etc., etc.) MPI is chosen over the CMR
• Assessment of LV wall motion to identify patients with akinetic segments that would benefit from coronary revascularization
• To identify the extent and location of myocardial necrosis in patients with chronic or acute ischemic heart disease

BACKGROUND

(Pennell, 2010)

• CMR is an imaging modality used to assess cardiac or vascular anatomy, function, perfusion and tissue characteristics in a single examination, regardless of patient’s body habitus or exposure to ionizing radiation or contrast medium. In lesions affecting the right heart, CMR provides excellent visualization and volume determination regardless of RV shape. This is particularly useful in patients with congenital heart disease

• **CMR Safety** (Brignole, 2013; Indik, 2017; Nazarian, 2017; Russo, 2017)
 Since many cardiac patients have cardiac implanted electrical devices, the risk of CMR to the patient and the device must be weighed against the benefit to the patient, in terms of clinical value in optimal management.

Cardiac magnetic imaging (CMR) is often required when transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) provide inadequate imaging data.

Stress CMR for assessment of coronary artery disease (CAD) is performed pharmacologically either as:
• Vasodilator perfusion imaging with gadolinium contrast; OR
• Dobutamine inotropic wall motion (ventriculography)

With respect to CAD evaluation, since CMR is only pharmacologic (non-exercise stress), and stress echocardiography (SE) or myocardial perfusion imaging (MPI) provide similar information about CAD:

• Requests for stress CMR require **diversion** to exercise SE first, and to exercise MPI second.

• **Exemptions** for the diversion to SE or exercise MPI:
 o If body habitus or marked obesity (e.g. BMI ≥ 40) would interfere significantly with imaging with SE and MPI (Shah 2014)
 o Evaluation of young (< 55 years old) patients with documented complex CAD, who are likely to need frequent non-invasive coronary ischemia evaluation and/or frequent radiation exposure from other testing (Hirshfeld, 2018)

OVERVIEW

CMR in CORONARY ARTERY DISEASE (CAD)
(Fihn, 2012, Montalescot, 2013, Wolk, 2013)

Stable patients without known CAD fall into 2 categories (Fihn, 2012, Montalescot, 2013, Wolk, 2013):

• **Asymptomatic**, for whom global risk of CAD events can be determined from coronary risk factors, using calculators available online

• **Symptomatic**, for whom we estimate the pretest probability that their chest-related symptoms are due to clinically significant (≥ 50%) CAD (below):

The 3 Types of Chest Pain or Discomfort

• **Typical Angina (Definite)** is defined as including all 3 characteristics:
 o Substernal chest pain or discomfort with characteristic quality and duration
 o Provoked by exertion or emotional stress
 o Relieved by rest and/or nitroglycerine

• **Atypical Angina (Probable)** has only 2 of the above characteristics

• **Nonanginal Chest Pain/Discomfort** has only 0 - 1 of the above characteristics

Once the type of chest pain has been established from the medical record, the pretest probability of CAD (meaning obstructive CAD defined as coronary arterial narrowing ≥ 50%) is estimated from the **Diamond Forrester Table** below, recognizing that in some cases multiple additional coronary risk factors could increase pretest probability (Wolk, 2013):
<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>Gender</th>
<th>Typical/Definite Angina Pectoris</th>
<th>Atypical/Probable Angina Pectoris</th>
<th>Nonanginal Chest Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 39</td>
<td>Men</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>40 – 49</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>50 – 59</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>≥ 60</td>
<td>Men</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>High</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

- **Very low**: < 5% pretest probability of CAD, usually not requiring stress evaluation (Fihn 2012)
- **Low**: 5 - 10% pretest probability of CAD
- **Intermediate**: 10% - 90% pretest probability of CAD
- **High**: > 90% pretest probability of CAD
Table 17. Suggested Follow-Up of Aortic Pathologies After Repair or Treatment

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Interval</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dissection</td>
<td>Before discharge, 1 mo, 6 mo, yearly</td>
<td>CT or MR, chest plus abdomen TTE</td>
</tr>
<tr>
<td>Chronic dissection</td>
<td>Before discharge, 1 y, 2 to 3 y</td>
<td>CT or MR, chest plus abdomen TTE</td>
</tr>
<tr>
<td>Aortic root repair</td>
<td>Before discharge, yearly</td>
<td>TTE</td>
</tr>
<tr>
<td>AVR plus ascending</td>
<td>Before discharge, yearly</td>
<td>TTE</td>
</tr>
<tr>
<td>Aortic arch</td>
<td>Before discharge, 1 y, 2 to 3 y</td>
<td>CT or MR, chest plus abdomen</td>
</tr>
<tr>
<td>Thoracic aortic stent</td>
<td>Before discharge, 1 mo, 2 mo, 6 mo, yearly Or 30 days*</td>
<td>CXR, CT, chest plus abdomen</td>
</tr>
<tr>
<td>Acute IMH/PAU</td>
<td>Before discharge, 1 mo, 3 mo, 6 mo, yearly</td>
<td>CT or MR, chest plus abdomen</td>
</tr>
</tbody>
</table>

*US Food and Drug Administration stent graft studies usually required before discharge or at 30-day CT scan to detect endovascular leaks. If there is concern about a leak, a predischARGE study is recommended; however, the risk of renal injury should be borne in mind. All patients should be receiving beta blockers after surgery or medically managed aortic dissection, if tolerated. Adapted from Erbel et al (539).

AVR indicates aortic valve replacement; CT, computed tomographic imaging; CXR, chest x-ray; IMH, intramural hematoma; MR, magnetic resonance imaging; PAU, penetrating atherosclerotic ulcer; and TTE, transthoracic echocardiography.

Abstracted from Hiratzka, 2010
Abbreviations

ARVD/C Arrhythmogenic right ventricular dysplasia/cardiomyopathy
CABG Coronary artery bypass grafting surgery
CAD Coronary artery disease
CMR Cardiac magnetic resonance (imaging)
CT Computed tomography
ECG Electrocardiogram
ICD Implantable cardioverter-defibrillator
LBBB Left bundle-branch block
LV Left ventricular
MPI Myocardial perfusion imaging
MR Mitral regurgitation
MR(I) Magnetic resonance (imaging)
RV Right ventricle
SE Stress echocardiography
TAVR Transcatheter Aortic Valve Replacement
TTE Transthoracic Echo
TEE Transesophageal Echo
VT Ventricular tachycardia

POLICY HISTORY:
Review Date: July 2019
Review Summary:
- Removed table of comparison to Cardiac CT
- Removed global risk calculator for asymptomatic patients
- Removed scenarios for which approval of CMR is not approvable as well as follow-up indications
- Removed section on MRI compatibility with Pacemakers
- Format change: moved CAD section – clarification of indication of use of MRI in CAD and removed detailed indications
- Expanded aortic screening section with removal of chart for “normal” sizes of aortic aneurysm
- Expanded indication for prosthetic heart valves
- Removed indication of screening with a strong family history of cardiomyopathy

Review Date: March 2020
Review Summary:
- Added general information section as Introduction which outlines requirements for documentation of pertinent office notes by a licensed clinician, and inclusion of laboratory testing and relevant imaging results for case review.
• **Added the following to the section Cardiomyopathy & Heart Failure:**
 - Edited indication to assess systolic and diastolic function in the evaluation of a newly diagnosed cardiomyopathy
 - Added the following to suspected infiltrative disease such as amyloidosis, sarcoidosis, hemochromatosis, or endomyocardial fibrosis: if PET has not been performed
 - Added suspected inherited or acquired cardiomyopathy
 - Added evaluation after appropriate time interval following revascularization and/or optimal medical therapy to determine candidacy for ICD/CRT and/or to determine optimal choice of device
 - Added clinical symptoms and signs consistent with a cardiac diagnosis known to cause presyncope/syncope (including but not limited to hypertrophic cardiomyopathy)
 — Added pulmonary hypertension in the absence of severe valvular disease
 - **Added new references**
 - Added the following indications to the section Evaluation of Intra- and Extra-Cardiac Structures
 - Initial evaluation of cardiac mass, suspected tumor or thrombus or potential cardiac source of emboli
 - Re-evaluation of intracardiac mass when findings would change therapy
 - Added the following to identification and characteristics of coronary aneurysm: or anomalous coronary arteries
 - **Added section on Pre-Procedural Evaluation for Closure of ASD or PFO** including the following indications:
 - For assessment of atrial septal anatomy and atrial septal aneurysm
 — For assessment of suitability for percutaneous device closure

• **Added section on Assessment Following LAA Occlusion** including the following indications:
 - For surveillance at 45 days or FDA guidance, if TEE or Heart CT not done, to assess for:
 - Device stability
 - To exclude device migration
 - To assess for device leaks (LAA occlusion device and PFO/ASD)

• **Added the following to evaluation of left atrium and pulmonary veins prior to radiofrequency ablation for atrial fibrillation:** if cardiac CT has not been done
• Added the following to the section Aortic Pathology
 o Re-evaluation (<1 y) of the size and morphology of the aortic sinuses and ascending aorta in patients with a bicuspid AV and an ascending aortic diameter >4 cm with 1 of the following:
 ▪ Aortic diameter >4.5 cm
 ▪ Rapid rate of change in aortic diameter
 ▪ Family history (first-degree relative) of aortic dissection
 o Added the following to the indication of evaluation in patients with known or suspected connective tissue disease or genetic conditions that predispose to aortic aneurysm or dissection (can be done more frequently if >4.5 cm or rate of growth > 0.5 cm/year: up to twice per year)

• Extensive update to the indications for Congenital Heart Disease to include the following:
 o For all indications noted, either CT or CMR can be done
 o All lesions: evaluation prior to planned repair and evaluation for change in clinical status and/or new concerning signs or symptoms
 o Specific indications based on lesion were added with interval and criteria for repeat imaging included
 o Added indication for coronary anomalies

• Updated and added new references
REFERENCES

Cleveland Clinic Journal of Medicine. 2018;85(6):481-492. Available at:

Ohana M, Bakouboula B, Labani A, et al. Imaging before and after catheter ablation of atrial fibrillation. Diagnostic and Interventional Imaging. 2015; 96:1113—1123. Available at: https://ac.els-cdn.com/S2211568415001734/1-s2.0-S2211568415001734-main.pdf?_tid=f89a367c-7c47-4066-9b2b-a55ec3dae7dd&acdnat=1525713586_4846a92586b60ba24ee857f337e5258

Zamorano JL, Lancellotti P, Munoz DR, et al. 2016 ESC Position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice

Reviewed / Approved by Rosalind C. Watman, D.O., Medical Director, Cardiology

Reviewed / Approved by Patrick Browning, VP, Medical Director

Disclaimer: Magellan Healthcare service authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Magellan Healthcare subsidiaries including, but not limited to, National Imaging Associates (“Magellan”). The policies constitute only the reimbursement and coverage guidelines of Magellan. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. Magellan reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.