
Clinical Impact of Vancomycin Minimum Inhibitory Concentration on Outcomes in Patients with Coagulase-Negative Staphylococcal Bacteremia

Wade Wheat, PharmD PGY-2 Infectious Diseases Pharmacy Resident June 2nd, 2023

https://www.sciencephoto.com/media/12763/view

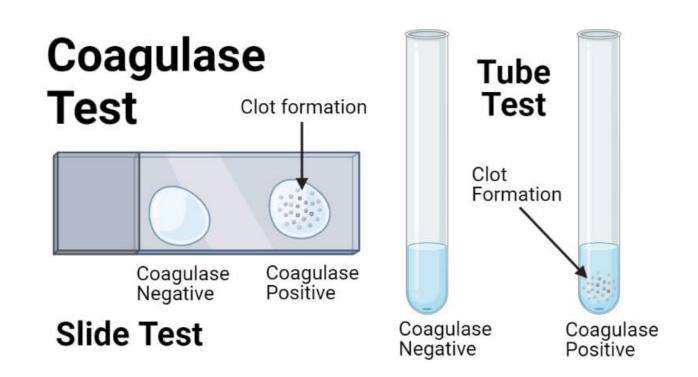
Abbreviations

CoNS	Coagulase-negative Staphylococci	IDSA	Infectious Diseases Society of America	HTN	Hypertension
BSI	Bloodstream infection	IE	Infective Endocarditis	HLD	Hyperlipidemia
CLSI	Clinical and Laboratory Standards Institute	Echo	Echocardiogram	HCV	Hepatitis C Virus
MIC	Minimum inhibitory concentration	IV	Intravenous	HIV	Human immunodeficiency virus
UMCNO	University Medical Center New Orleans	TPN	Total parenteral nutrition	ID	Infectious diseases
S	Susceptible	ESRD	End stage renal disease	PICC	Peripherally-inserted central catheter
1	Intermediate	HD	Hemodialysis	IVDU	Intravenous drug use
R	Resistant	CHF	Congestive hearth failure		
PBP	Penicillin Binding Protein	COPD	Chronic obstructive pulmonary disease		
MRSA	Methicillin-resistant <i>Staphylococcus</i> aureus	EtOH	Ethanol		

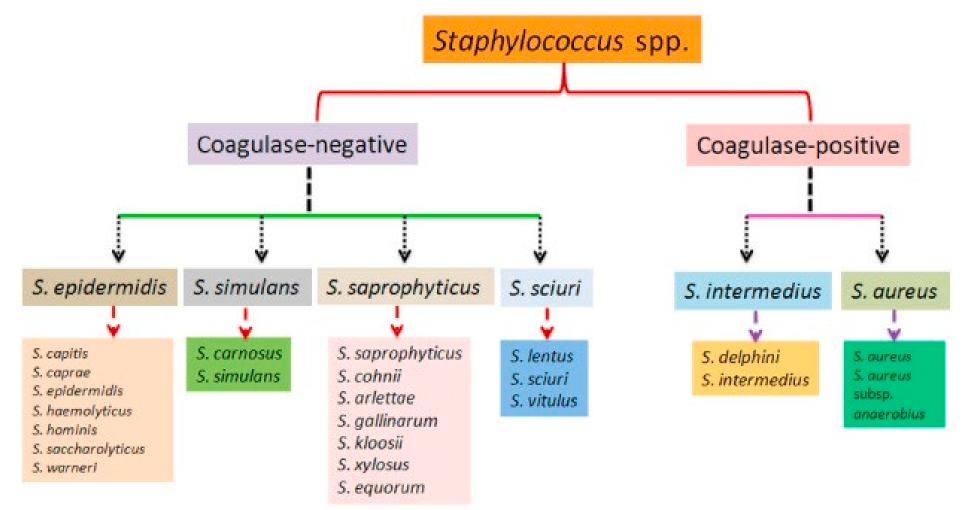
Objectives

- Describe the epidemiology of CoNS BSIs
- Summarize the microbiology of CoNS
- Recall the CLSI breakpoints for CoNS and compare them to Staphylococcus aureus
- Outline appropriate treatment for CoNS bloodstream infections
- Review study evaluating the clinical impact of vancomycin MICs of ≥2 mcg/mL in CoNS bacteremia

Background



Background – CoNS


- Gram-positive organisms that are a common component of skin flora
- Heterogenous group of Staphylococci
- Laboratory testing performed to determine if coagulase positive or coagulase negative
- Differentiates *S. aureus* from other staphylococcal species

5

• CoNS are generally less virulent than *S. aureus*

Species of CoNS

6

Epidemiology of CoNS

•Most common cause of nosocomial bacteremia

•Many of these bloodstream infections are secondary to intravenous catheter infection

•*S. epidermidis* is the most commonly isolated species of clinical significance

•CoNS readily adhere to foreign materials and form biofilms

•Determination of contamination versus true infection must be made

Richards Mjet al. *Crit Care Med.* 1999;27(5):887-892. doi:10.1097/00003246-199905000-00020 Wisplinghoff H, et al. *Clin Infect Dis.* 2004;39(3):309-317. doi:10.1086/421946 Pfaller Maet al. *Clin Microbiol Rev.* 1988;1(3):281-299. doi:10.1128/CMR.1.3.281

7

Infection versus Contamination

- Since CoNS are normal skin flora, there is risk for contamination of collected isolates
- Up to 65% of isolated CoNS from blood cultures may be contaminants
- This can occur during various steps of culture processing
- Assessment of the clinical significance of the positive blood culture must be performed

Infection versus Contamination

Number of positive bottles and the number of cultures obtained

Species of CoNS recovered Length of time for blood cultures to become positive

Culture collection site

Clinical signs of infection

Magadia RR, et al. *Infect Dis Clin North Am.* 2001;15(4):1009-1024. doi:10.1016/s0891-5520(05)70184-7

Mirrett S, et al. *J Clin Microbiol*. 2001;39(9):3279-3281. doi:10.1128/JCM.39.9.3279-3281.2001 Weinstein MP. *Clin Infect Dis*. 1996;23(1):40-46. doi:10.1093/clinids/23.1.40

CoNS Blood Culture Reporting at UMCNO

All CoNS isolated from blood cultures are speciated for laboratory recording purposes

• Species can be seen by microbiology lab

Species is only released to the EMR under certain circumstances:

- Growth from more than 1 set of blood cultures AND
- CoNS species must be the same in both sets AND
- Susceptibilities of the CoNS must be the same for both sets

If these conditions are not met, the isolate(s) are deemed contaminants and reported only as CoNS

Unless requested by physician

Possible pathogen

Culture, Blood	ulture, Blood Positive Anaerobic Bottle Staphylococcus epidermidis !!				
	This is an edited result. Previous organism was Staphylococcus, Coagulase Negative on 4/19/2023 at 1349 CDT				
Gram Stain	**				
	Positive Anaerobic Bottle Gram Positive Cocci in Clusters				

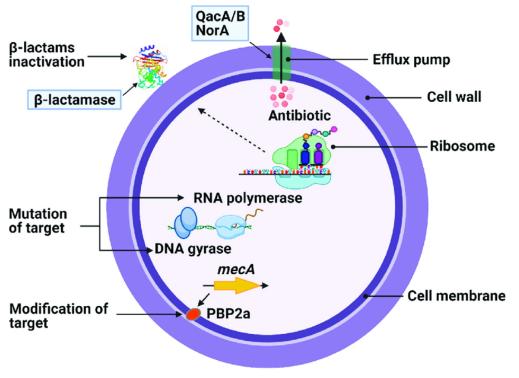
Probable contaminant

Culture, Blood	Positive Anaerobic and Aerobic Bottle Staphylococcus, Coagulase Negative !!	
	Mixed Morphologies Present	
Gram Stain	<u>**</u>	
	Positive Anaerobic and Aerobic Bottles Gram Positive Cocci in Clusters	

CoNS Breakpoints

	MIC Breakpoints for CoNS					
Antibiotic	Antibiotic Species S I					
Oxacillin	S. lugdunensis	≤ 2 mcg/mL	-	≥ 4 mcg/mL		
	All CoNS except <i>S. lugdunensis</i>	≤ 0.5 mcg/mL	-	≥ 1 mcg/mL		
Vancomycin	All CoNS	≤ 4 mcg/mL	8 – 16 mcg/mL	≥ 32 mcg/mL		
	S. aureus	≤ 2 mcg/mL	4 – 8 mcg/mL	≥ 16 mcg/mL		

Lewis J, Weinstein M, et al. CLSI M100-ED32:2022 Performance Standards for Antimicrobial Susceptibility Testing, 32nd Edition. Published February 2022.


11

University Medical Center New Orleans 🗩 LCMC Health

CoNS Resistance Trends

- About 80% of CoNS species are methicillinresistant
 - Presence of the mecA gene which causes mutations in PBP-2A
 - Confers resistance to antistaphylococcal penicillins and most beta-lactam antibiotics
- Vancomycin heteroresistance has also been described in CoNS
 - Possibly due to increased cell wall thickness
 - Similar mechanism of resistance to *S. aureus* although less common

https://www.researchgate.net/figure/Molecular-mechanisms-of-antibiotic-resistance-in-Staphylococcusaureus-Antimicrobial_fig1_350713416 Diekema DJ, et al. *Clin Infect Dis.* 2001;32 Suppl 2:S114-S132. doi:10.1086/320184 Ryffel C, et al. *Gene.* 1990;94(1):137-138. doi:10.1016/0378-1119(90)90481-6

Effect of Vancomycin MIC on MRSA

- A vancomycin MIC of ≥2 mcg/mL for MRSA has been associated with increased clinical failure and mortality
- IDSA guidelines recommend using an alternative agent in treatment of MRSA with a vancomycin MIC of ≥2 mcg/mL

Study	Design	Findings
Soriano A, et al	 Prospective follow-up study 414 episodes of MRSA bacteremia from 1991 through 2005 Stratified into groups One being receipt of empiric vancomycin and a vancomycin MIC of 2 µg/mL (n=40) 	 Vancomycin MIC of 2 µg/mL and treatment with vancomycin associated with: Lower risk of shock (OR, 0.33; 95% CI, 0.15–0.75) Higher risk of mortality (OR, 6.39; 95% CI, 1.68–24.3)

13

Vancomycin Heteroresistance in CoNS

Increasing reports of heteroresistance in CoNS species

Hypothesized that vancomycin MICs of $\geq 2 \text{ mcg/mL}$ may lead to worse outcomes (similar to that of *S. aureus*)

Available literature is conflicting

Mashaly GE, et al. Ann Clin Microbiol Antimicrob. 2017;16(1):63. doi:10.1186/s12941-017-0238-5 García de la Mària C, et al. PLoS One. 2015;10(5):e0125818. doi:10.1371/journal.pone.0125818

Vancomycin Heteroresistance in CoNS

Study	Design	Results
Mashaly GE, et al.	 Prospective in-vitro study of 58 blood samples positive for CoNS Isolates screened for vancomycin heteroresistance on agar containing 4 µg/mL vancomycin 	 75.9% of isolates oxacillin resistant All had susceptible vancomycin MICs 15.5% (9/58) could grow on agar containing 4 µg/mL of vancomycin
García de la Mària C, et al.	 Prospective cohort study including 88 blood culture CoNS isolates of patients with IE 98 isolates were available for the 88 included patients 	 71% (70/98) of isolates were <i>S. epidermidis</i> 44 were methicillin-resistant (51% of <i>S. epidermidis</i>) 42 had a vancomycin MIC ≥2 µg/mL (20 treated with vancomycin) Highest one-year mortality in vancomycin-treated patients with vancomycin MICs ≥2 µg/mL (48% MIC <2 mcg/mL, 65% MICs ≥2, P = 0.003)

García de la Mària C, et al. *PLoS One*. 2015;10(5):e0125818. doi:10.1371/journal.pone.0125818

Appropriate Therapy for CoNS Bacteremia

• Currently, vancomycin is the empiric drug of choice for CoNS bacteremia due to high incidence of methicillin-resistance

• Tailored antibiotic selection should be guided by susceptibility results

• Duration of therapy is dependent on likelihood of contamination, source of infection, and complicating factors

Categories of CoNS Bacteremia

Simple (treat for 0-3 days)

- Single blood culture positive for CoNS
- Negative follow-up blood culture
- No signs or symptoms of local infection at catheter site
- No signs or symptoms of metastatic infection
- No indwelling IV prosthetic devices

Uncomplicated (treat for 5-7 days)

- Two or more blood cultures positive for CoNS drawn 24 hours apart or less
- Single blood culture positive for CoNS with signs or symptoms of infection at catheter site

Complicated (treat for 7-28 days or longer)

- · Echo with evidence of endocarditis
- Signs or symptoms of metastatic infection

17

Appropriate Therapy for CoNS Bacteremia

Study	Design	Results
Holland TL, et al.	 Randomized clinical trial 509 adults with staphylococcal bacteremia 385 (76%) with CoNS bacteremia 116 (23%) with <i>S. aureus bacteremia</i> Algorithm-based therapy (n = 255) or usual practice (n = 254) Patient with complicated bacteremia were excluded 34 patients with complicated CoNS bacteremia identified after enrolled 	 No difference in clinical success 85.6% (166/194) of algorithm-based therapy 88% (168/191) of usual practice (-2.4 (-9.2 to ∞)) No difference in clinical success in complicated CoNS bacteremia 89.5% (17/19) of algorithm-based therapy 73.3% (11/15) of usual practice (16.1 (-10.2 to ∞))

Study Objectives

Study Objectives

 The purpose of this study is to assess the clinical impact of CoNS BSIs with a vancomycin of MIC ≥2 µg/mL versus <2 mcg/mL

Methods

Methods

Design

• Retrospective cohort analysis

Data Collection

- A list of patients with a blood culture positive for CoNS provided by the UMCNO microbiology lab
- Included patients admitted between January 1, 2020, and August 1, 2022
- Served as the study population

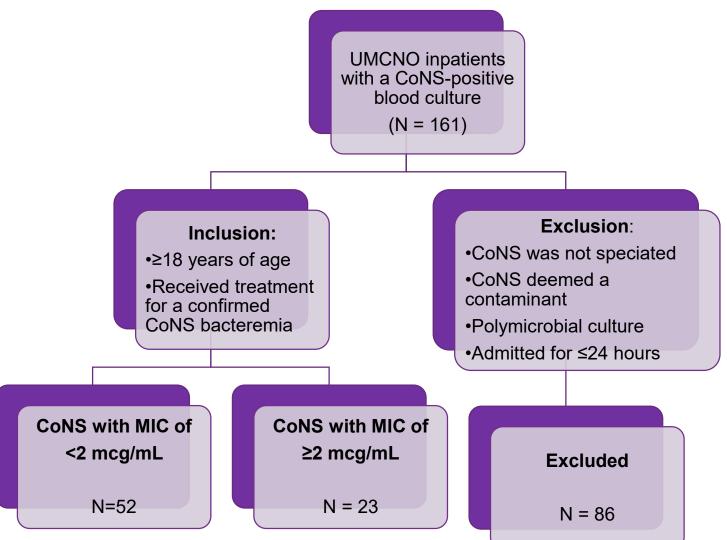
Outcome Measures

Primary Outcome

• Difference in 30-day mortality between groups

Secondary Outcomes

- Difference in in-hospital, all-cause mortality
- Difference in duration of bacteremia
- Difference in hospital length of stay
- Percentage of methicillin-resistant CoNS


Statistical Analyses

- Statistical analyses performed using Graphpad Prism and Statistics Kingdom
- A descriptive analysis was performed for baseline characteristics, primary, and secondary outcomes
- Categorical variables were described as percentages and frequency
 - Compared using Fischer exact test
- Continuous variables were described as medians and IQR
 - Compared using Mann-Whitney U test
- Groups were compared using a 2-sided P value with a value of ≤0.05 being statistically significant

Results

Patient Population

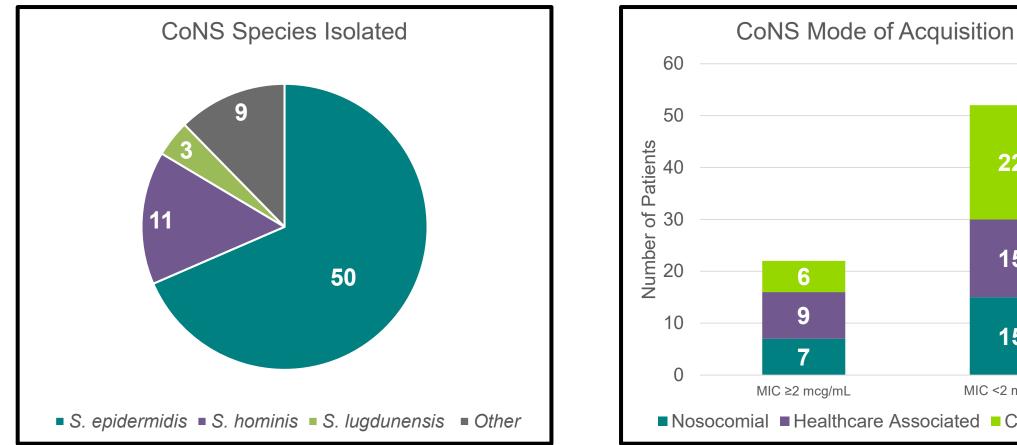
University Medical Center New Orleans 😏 LCMC Health

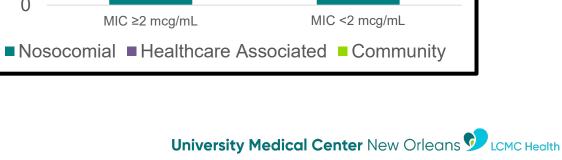
Baseline Characteristics

- Baseline characteristics similar between groups
- 56% (42/75) patients were male
- 52% (39/75) were black
- 35.7% (26/75) were white

Demographics	MIC <2 mcg/mL (n=52)	MIC ≥2 mcg/mL (n=23)	P value
Median age, years	53.3	51.3	0.48
Median weight, kg	80.7	77.1	0.15
Male, n (%)	33 (63.5)	9 (39.1)	0.08
Race/Ethnicity, n (%) Black White Other	24 (46.1) 21 (40.4) 7 (13.5)	15 (65.3) 5 (21.7) 3 (13)	0.14 0.19 1

Baseline Characteristics


• History of chronic illness similar between groups

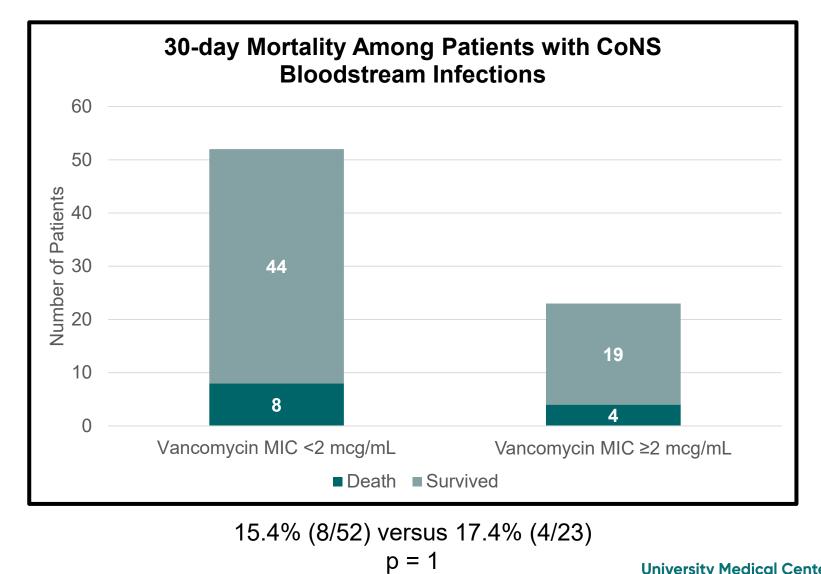

Demographics	MIC <2 mcg/mL (n=52)	MIC ≥2 mcg/mL (n=23)	P value
History of chronic illness			
Chronic decubitus ulcer	3 (5.8%)	1 (4.3%)	1
Obesity	2 (3.8%)	1 (4.3%)	1
Diabetes mellitus	11 (21.2%)	3 (13.0%)	0.53
IV Drug Use	7 (13.5%)	0 (0%)	0.09
Chronically TPN dependent	2 (3.8%)	2 (8.7%)	0.58
ESRD requiring HD	1 (1.9%)	2 (8.7%)	0.22
Malignancy	4 (7.7%)	3 (13.0%)	0.67
CHF	1 (1.9%)	1 (4.3%)	1
COPD	1 (1.9%)	0 (0%)	0.52
EtOH abuse	3 (5.8%)	0 (0%)	0.55
Paraplegia	3 (5.8%)	0 (0%)	0.55
Cirrhosis	1 (1.9%)	0 (0%)	1
HTN	1 (1.9%)	0 (0%)	1
HLD	1 (1.9%)	0 (0%)	1
HCV	3 (5.8%)	0 (0%)	0.55
HIV	1 (1.9%)	0 (0%)	1
Heart valve replacement	0 (0%)	2 (8.7%)	0.09

Baseline and Microbiologic Characteristics

Demographic	MIC <2 mcg/mL (n=52)	MIC ≥2 mcg/mL (n=23)	P value
ID consult, n (%)	35 (67.3)	19 (82.6)	0.27
Pitt bacteremia score, median	0	0	0.78 IQR (0, 1)
CoNS species, n (%)			
S epidermidis	30 (57.7)	20 (87)	0.02
S hominis	11 (21.2%)	1 (4.3)	0.09
S lugdunensis	3 (5.8)	1 (4.3)	0.55
Other CoNS spp.	8 (15.4)	1 (4.3)	0.26
Oxacillin resistance, n (%)	26 (50)	18 (78.3)	0.02

Microbiologic Characteristics

CoNS Acquisition Characteristics


- Mode of acquisition was similar between groups
 - Community-acquired: 37.3% (28/75)
 - Non-nosocomial healthcare-associated: 32% (24/75)
 - Nosocomial acquisition: 29.3 % (22/75)
 - Unknown: 1.3% (1/75)

Demographic	CoNS with vancomycin MIC <2 mcg/mL (n=52)	CoNS with vancomycin MIC ≥2 mcg/mL (n=23)	P value
Aode of acquisition, n (%)			
Nosocomial	15 (28.8)	7 (30.4)	1
Non-nosocomial healthcare	15 (28.8)	9 (39.1)	0.43
associated			
Community	22 (42.3)	6 (26.1)	0.21
Unknown	0 (0)	1 (4.3)	0.31

CoNS Acquisition Characteristics

Demographic	Vancomycin MIC <2 mcg/mL (n=52)	Vancomycin MIC ≥2 mcg/mL (n=23)	P value
Source of CoNS, n (%)			
TPN line	5 (9.6%)	5 (21.7%)	0.56
PICC line	10 (19.2%)	4 (17.4%)	0.27
Midline	4 (7.7%)	1 (4.3%)	1
Skin	10 (19.2%)	4 (17.4%)	1
Oral	1 (1.9%)	0 (0%)	1
Pacemaker	0 (0%)	1 (4.3%)	1
IVDU	2 (3.8%)	0 (0%)	0.31
Surgical site infection	1 (1.9%)	0 (0%)	1
HD port	2 (3.8%)	0 (0%)	1
Urinary	1 (1.9%)	3 (13.0%)	1
Respiratory	1 (1.9%)	0 (0%)	0.08
Gastrointestinal	1 (1.9%)	1 (4.3%)	1
Unclear	14 (26.9%)	4 (17.4%)	0.52

Primary Outcome

Secondary Outcomes

Outcome	MIC ≥ 2 mcg/mL (n=23)	MIC <2 (n=52)	P value
In-hospital, all cause mortality	13% (3/23)	11.5% (6/52)	p= 1
Duration of bacteremia (median)	1 days	1 days	p= 0.98 IQR: 1 <i>,</i> 1
Hospital length of stay (median)	16 days	12 days	p= 0.69 IQR: 6, 27
Percentage of methicillin- resistant CoNS	78.3% (18/23)	50% (26/52)	p= 0.02

Patients With and Without ID Consult

Outcome	ID Consult* (n=51)	No ID Consult* (n=17)	P value
Scheduled duration of antibiotic therapy (median)	14	7	p= 0.03 IQR: 7, 17
Presumed metastatic infection	29.4% (15/51)	0% (0/17)	p= 0.01
Scheduled for 14-17 days of antibiotic therapy and treated as if uncomplicated <i>Staphylococcus aureus</i> bacteremia	66.7% (10/15)	66.7% (4/6)	p= 1

*Includes only patients with a set duration of therapy per documentation in EHR

Conclusions and Discussion

Conclusion

- A vancomycin MIC of ≥2 mcg/mL or <2 mcg/mL did not significantly affect clinical outcomes in patients with CoNS BSIs
- *S. epidermidis* was the most common CoNS species isolated
- S. epidermidis was the species most likely to have a vancomycin MIC of ≥2 mcg/mL
- Overall, 58.7% of CoNS isolates were methicillin-resistant

Study Limitations

- Small patient population included
- Single-center, retrospective study
- Lack of cases of CoNS infective endocarditis
- Did not stratify patient risk at start of therapy

Relevance to Practice

• Reinforces current practice in CoNS treatment based on IDSA MIC breakpoints

 Vancomycin remains an appropriate empiric antibiotic selection for CoNS with a vancomycin MIC of ≥2 mcg/mL or more

• Further research is needed to determine a true clinical relevance of higher vancomycin MICs in CoNS BSIs

What's next...

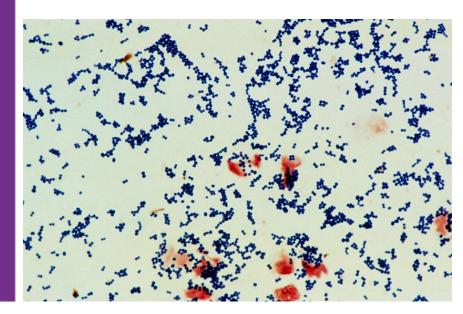
Future Direction

- Continue use of vancomycin as CoNS BSI empiric therapy
- Provide education to differentiate infection versus contamination when CoNS isolated
- Consider transition to alternative agent in CoNS IE if vancomycin MIC is ≥2 mcg/mL
- Continue assessment of appropriate therapy for CoNS BSI as new literature emerges
- Appropriately de-escalate antibiotics as appropriate based on susceptibilities

Acknowledgements

Research Team

Brenda Simiyu, PharmD, BCPS, BCIDP, AAHIVP


Gabriela Andonie, PharmD, BCIDP, AAHIVP

Lillian Bellfi, PharmD, BCCCP

Clinical Impact of Vancomycin Minimum Inhibitory Concentration on Outcomes in Patients with Coagulase-Negative Staphylococcal Bacteremia

Wade Wheat, PharmD PGY-2 Infectious Diseases Pharmacy Resident June 2nd, 2023

https://www.sciencephoto.com/media/12763/view

Evaluation Reminder

Evaluation reminder for the 2023 Louisiana Office of Public Health Antimicrobial Stewardship Summit

Please use this QR code or log-on/type in the following URL: <u>https://bit.ly/AMR2023</u>

To use QR code:

- Open your phone Camera app from the Home screen, Control Center, or Lock screen.
- Select the rear-facing camera. Hold your device so that the QR code appears in the viewfinder in the Camera app.
- Tap the notification to open the link associated with the QR code.

